
DEPARTMENT OF THE NAVY
NAVAL SEA SYSTEMS COMMAND

1333 I SAAC HULL AVE SE
WASHINGTON NAVY YARD DC 20376--0001

MEMORANDUM FOR THE RECORD

1.N Rt.PU RHLK 10

8020
Ser N31/545

4 Jun 18

Subj: JOINT SERVICES WEAPON SAFETY REVIEW BOARDS ENDORSEMENT OF
THE JOINT SERVICES-SOFTWARE SAFETY AUTHORITIES SOFTWARE
SYSTEM SAFETY IMPLEMENTATION PROCESS AND TASKS SUPPORTING
MIL-STD-882E (IMPLEMENTATION GUIDE), REVISION B, 14 MARCH 2018

Ref: (a) DoD Instruction 5000.69, DoD Joint Services Weapon and Laser System Safety
Review Processes, of 9 November 2011

(b) DoD Manual 5000.69, Joint Services Weapon Safety Review Process, of
30 July 2014

(c) JS-SSA, Software System Safety Implementation Process and Tasks Supporting
MIL-STD-882E, of 1 April 2016

(d) JS-SSA, Software System Safety Implementation Process and Tasks Supporting
MIL-STD-882E, JS-SSA-JG Rev. A, of 10 October 2017

Encl: (1) Joint Boards Endorsement
(2) JS-SSA, Software System Safety Implementation Process and Tasks Supporting MIL­

STD-882E, JS-SSA-JG Rev. B, 14 March 2017

1. Reference (a) establishes policy and assigns responsibilities for the Joint Services Weapon
Safety Review (JSWSR) Boards. Reference (b) specifies that the Joint Services-Software Safety
Authorities (JS-SSA) functions as a review authority under the direction of the JSWSR Boards
for software safety.

2. The JS-SSA Sub-Working Group of the JSWSR developed the original issue of the
Implementation Guide, reference (c), with subsequent endorsement by the JSWSR on
29 June 2016. The JS-SSA revised the Implementation Guide, reference (d), with subsequent
endorsement by the JSWSR on 17 October 2017, to address initial comments received from the
Services.

3. The JS-SSA performed an out-of-cycle revision of the Implementation Guide to incorporate
JS-SSA-approved comments and recommendations resulting from U.S. Navy-initiated Carnegie
Mellon (CM) Software Engineering Institute (SEI) review of reference (d). Comments resulted
in revising Section 3.9 Perform Code-Level Safety Analysis of the Implementation Guide, as
well as clarifying the importance of application within the software development life-cycle and
processes. Technical content and data structure is unchanged as compared to reference (d).
Identified administrative and clerical errors in text and figures have also been corrected.

4. The JSWSR Boards have endorsed this revision to the Implementation Guide. Enclosure (1)
provides the chairs of the JSWSR Boards signature endorsements of this revision, referred to as

Distribution Statement A: Approved for public release; distribution unlimited.

Subj: JOINT SERVICES WEAPON SAFETY REVIEW BOARDS ENDORSEMENT OF
THE JOINT SERVICES-SOFTWARE SAFETY AUTHORITIES SOFTWARE
SYSTEM SAFETY IMPLEMENTATION PROCESS AND TASKS SUPPORTING
MIL-STD-882E (IMPLEMENTATION GUIDE), REVISION B, 14 MARCH 2018

JS-SSA-IG Rev. B. Enclosure (2) provides the JS-SSA endorsed Software System Safety
Implementation Process and Tasks Supporting MIL-STD-882E, JS-SSA-IG Rev. B.

5. The point of contact for this action is Mr. Eric Hawley, USN, Naval Ordnance Safety and
Security Activity (NOSSA N31). Mr. Hawley may be reached at DSN 354-6018, commercial
(301) 744-6018, or email at eric.hawley@navy.mil.

Copy to: (electronic)

M. E.CARO
By direction

Army Weapon System Safety Review Board (P. Vittitow, K. Rose, D. Hanline)
USAF AFSEC/SEW (Col M. Murphy, J. LaHoff)
96TW /SES (M. Bridge, Dr. A. McKenzie)
NA VORDSAFSECACT (E. Hawley, D. Bower, M. Dabney, T. Coles-Cieply, C. Manns,

R. Rishell, D. Sadler, M. Demmick, G. Vargo)

2

Endorsement

The undersigned endorse the recommendations of the Joint Services Weapon Safety Review -
Joint Services-Software Safety Authorities Software System Safety Implementation Process and
Tasks Supporting MIL-STD-882E (Implementation Guide), JS-SSA-JG Rev. B, 14 March 2017.

Digitally signed by CARO.MARY.E.1257718359

CARO MARY E 1257718359 DN:c=US, o=U.S. Government, ou=DoD, ou=PKl, ou=USN,
• • • cn=CARO.MARY.E.1257718359

Date: 2018.06.04 13:24:55 -04'00'

Ms. Mary Ellen Caro Date
Chair (Acting), Navy Weapon System Explosives Safety Review Board

Digitally signed by
VITTITOW.PATRICIA.S.1230578369 VITTITOW.PATRICIA.S.1230578369

Date: 2018.06.01 12:49:02 -05'00'

Ms. Patricia S. Vittitow Date
Chair, Army Weapon Systems Safety Review Board

CARRILLO.FRANCISC0.123114422 Digitally signed by

2
CARRILLO.FRANCISC0.1231144222
Date: 2018.05.11 09:14:45 -06'00'

Francisco Carrillo, GS-15, DAF Date
Deputy Chief, AF Weapons Safety
for
Col. Mark C. Murphy
Chair, U.S. Air Force Non-Nuclear Munition System Explosives Safety Board

Enclosure (1)

JOINT SERVICES - SOFTWARE SAFETY AUTHORITIES (JS-SSA)

Software System Safety
Implementation Process and Tasks

Supporting MIL-STD-882E
With Joint Software System Safety Engineering Handbook References

JS-SSA-IG Rev. B

3/14/2018

Distribution Statement A

Approved for public release; distribution is unlimited

This report is provided in fulfillment of the JS-SSA and provides implementation guidance for Software
System Safety program requirements that comply with the requirements specified in MIL-STD-882E and
guidance detailed in the Joint Software Systems Safety Engineering Handbook (JSSSEH).

Enclosure (2)

Table of Contents

JS-SSA-IG Rev. B
March 2018

1.0 Software System Safety Abstract 1

2.0 Specialty Task Outline and Process 2

3.0 Process and Process Tasks for Software System Safety (SSS) 2

3.1. Process Task 1.0: Prepare the SSMP 4

3.1.1. Reference Documents 5

3.1.2. Process Subtask 1.1: Obtain Inputs from Acquirer Regulations and Policies 5

3.1.3. Process Subtask 1.2: Obtain Inputs from MIL-STD-882E and Compliance Documents 5

3.1.4. Process Subtask 1.3: Obtain Commitment from Program Management 6

3.1.5. Process Subtask 1.4: Prepare SSMP for Review and Approval 6

3.1.6. Process Subtask 1.5: Provide Inputs to the RFP and SOW 6

3.2. Process Task 2.0: Prepare SSPP 6

3.2.1. Process Subtask 2.1: Obtain Inputs from the SSMP 7

3.2.2. Process Subtask 2.2: Obtain Inputs from Compliance Documents 7

3.2.3. Process Subtask 2.3: Integrate Software Safety Engineering Criteria 7

3.2.4. Process Subtask 2.4: Prepare LOR Appendix 8

3.2.5. Process Subtask 2.5: Obtain Acquirer Approval of the Developer's SSPP 10

3.3. Process Task 3.0: Preliminary Hazard Analysis 10

3.3.1. Process Subtask 3.1: Identify Hazards Pertaining to the Baseline System 12

3.3.2. Process Subtask 3.2: Identify Hazard Failure Modes 12

3.3.3 . Process Subtask 3.3: Identify Hazard Causes (Hardware/Software & Human Error) 13

3.3.4. Process Subtask 3.4: Identify Mitigation Requirements 13

3.3.5. Process Subtask 3.5 : Categorize Hazards with Risk Assessment Code (RAC) 14

3.4. Process Task 4.0: FHA 14

3.4.1. Process Subtask 4.1: Functionally Decompose the System 15

3.4.2. Process Subtask 4.2: Identification of All Functionality 16

3.4.3 . Process Subtask 4.3: Document Functional Failure Consequences 16

3.4.4. Process Subtask 4.4: Determine Severity of Functional Failure Consequences 17

3.4.5. Process Subtask 4.5: Identify SSFs 17

3.4.6. Process Subtask 4.6: Allocate SSFs to Subsystems and Software 17

3.4.7. Process Subtask 4.7: Map SSFs to the Software Design Architecture 17

3.4.8.

3.4.9.

3.5.

3.5.1.

3.5.2.

3.5.3.

3.5.4.

3.5.5.

3.5.6.

3.5.7.

3.5.8.

3.6.

3.6.1.

3.6.2.

3.6.3.

3.6.4.

3.6.5.

3.7.

3.7.1.

3.7.2.

3.7.3.

3.7.4.

3.8.

3.8.1.

3.8.2.

3.8.3.

3.9.

3.9.1.

JS-SSA-IG Rev. B
March 2018

Process Subtask 4.8: Assign SwCI to each Software Funct ion w ithin SSFs 18

Process Subtask 4.9: Identify Failure M it igation Requ irements ... 19

Process Task 5.0: In itiate System Requirements Hazard Analysis (SRHA) 20

Process Subtask 5.1: Review System and Functional Specifications 21

Process Subtask 5.2: Identify and Tag Contributing Safety-Significant Requirements (CSSR)

. 21

Process Subtask 5.3: Identify and Tag GSSR 21

Process Subtask 5.4: Identify and Tag Mitigating Safety-Significant Requ irements (MSSR)

. 22

Process Subtask 5.5: Document Output of SRA Steps .. 22

Process Subtask 5.6: Define Verification and Val idation for Each SSR 22

Process Subtask 5.7: Incorporate Each SSR into the Applicable Documents 23

Process Subtask 5.8: Assess Compliance of the System Hardware and Software with SSRs

. 23

Process Task 6.0: Perform System and Subsystem Hazard Analyses 23

Process Subtask 6.1: Integrate Hazards from the PHA 25

Process Subtask 6.2: Identify and Document New System/Subsystem Hazards 25

Process Subtask 6.3: Perform Causal Analysis on System/Subsystem Hazards 25

Process Subtask 6.4: Derive Specific Mitigation Requirements 26

Process Subtask 6.5: Categorize Hazards with a RAC 26

Process Task 7.0: Finalize SRHA 26

Process Subtask 7.1: Reassess SSRs 27

Process Subtask 7.2: Specify New System/Subsystem SSRs 27

Process Subtask 7.3: Assess Compliance of System/Subsystem Hardware and Software

with SSRs 27

Process Subtask 7.4: Author Appropriate Change Requests against Requirements 27

Process Task 8.0: Perform Final Safety Requirements Traceability 28

Process Subtask 8.1: Trace Safety Requirements to Design Architecture 28

Process Subtask 8.2: Trace Safety Requirements to Hazards 29

Process Subtask 8.3: Trace Safety Requirements to Implementation 29

Process Task 9.0: Perform Code-Level Safety Analysis 29

Process Subtask 9.1: Determine the Software Functionality to Analyze 30

ii

JS-SSA-IG Rev. B
March 2018

3.9.2. Process Subtask 9.2: Determine the Software Modules to Analyze 31

3.9.3. Process Subtask 9.3: Determine the Objectives of the Analysis ... 31

3.9.4. Process Subtask 9.4: Analyze LOR-1 Software 31

3.10. Process Task 10.0: Perform Software Test Planning 32

3.10.1. Process Subtask 10.1: Ensure Correctness and Application of the LOR Test Criteria 32

3.10.2. Process Subtask 10.2: Ensure Safety Functionality is Tested 32

3.10.3. Process Subtask 10.3: Comply with the LOR Test Criteria ... 33

3.10.4. Process Subtask 10.4: Assist in Writing Test Cases and Test Procedures 33

3.11. Process Task 11.0: Monitor Safety-Significant Software Testing 33

3.11.1. Process Subtask 11.1: Ensure Software Testing Conforms to LOR Test Criteria 33

3.11.2. Process Subtask 11.2: Ensure Safety Functionality is Tested 33

3.11.3. Process Subtask 11.3: Monitor Test Defects and Corrective Actions 34

3.11.4. Process Subtask 11.4: Review Final Software Test Results .. 34

3.12. Process Task 12.0: Perform Safety Risk Assessment 34

3.12.1. Process Subtask 12.1: Reassess all Documented Hazards 35

3.12.2. Process Subtask 12.2: Verify Hazard Mitigation .. 35

3.12.3. Process Subtask 12.3: Assess Partial Mitigation or Failure to Mitigate 35

3.12.4. Process Subtask 12.4: Assess Safety Risk ... 36

3.12.5. Process Subtask 12.5: Document and Communicate Safety Risk 36

3.13. Process Task 13.0: Participate in life-Cycle Management and Support 36

3.13.1. Process Subtask 13.1: Assess all Proposed Changes to and Operational Impacts on the

System 36

3.13.2. Process Subtask 13.2: Identify Changes and Operational Impacts Associated with Current

Hazards 37

3.13.3. Process Subtask 13.3: Identify New Hazards, Failure Modes, or Causes Associated with

Changes and Operational Usage 37

3.13.4. Process Subtask 13.4: Mitigate Hazards, Failure Modes, or Causes 37

3.13.5. Process Subtask 13.5: Document and Communicate Safety Risk 37

3.13.6. Process Subtask 13.6: Update all Safety-Related Artifacts .. 37

4.0 Acronym list 39

5.0 Glossary 41

iii

List of Figures

JS-SSA-IG Rev. B
March 2018

Figure 1.0: Initial SSS Process Chart for Pre-Contract and Requirements Phases 4

Figure 1.1: Process Task 1.0 Prepare the SSMP Subtasks ... 5

Figure 1.2: Process Task 2.0 SSPP Task and Subtasks 7

Figure 1.3: Sub-Process Task 2.4 Prepare LOR Appendix to SSPP 8

Figure 2.0: SSS Process Chart for Requirements and Preliminary Design Phases 11

Figure 2.1: Process Task 3.0 PHA Task and Subtasks 11

Figure 2.2: Example of Hazard Failure Modes Represented in Simple Logic Diagram 13

Figure 2.3: Process Task 4.0 Task and Subtasks 15

Figure 2.4: Example FHA Format 16

Figure 2.5: SSF Mapping to Software Design Architecture Example 18

Figure 2.6: Process Subtasks for 4.8 Assign SwCl/ LOR 19

Figure 2.7: Process Task 5.0 Initiate Safety Requirements Analysis Task and Subtasks 21

Figure 2.7.1: Initiate System Requirements Hazard Analysis Task and Subtasks 21

Figure 3.0: SSS Process Chart for Detail Design and Implementation Phases 24

Figure 3.1: Process Task 6.0 Perform In-depth Hazard Analysis and Subtasks 25

Figure 3.2: Process Task 7.0 Finalize System Requirements Hazard Analysis 27

Figure 3.3: Process Task 8.0 Perform Final Requirements Traceability and Subtasks 28

Figure 3.4: Hazard Closed-Loop Requirements Traceability 29

Figure 4.0: SSS Process Chart for Test and Deployment Phases 30

Figure 4.1: Process Task 9.0 Perform Code Level Analysis and Subtasks ... 30

Figure 4.2: Process Task 10.0 Perform Software Test Planning and Subtasks 32

Figure 4.3: Process Task 11.0 Monitor Safety-Related Testing and Subtasks 33

Figure 4.4: Process Task 12.0 Perform Safety Risk Assessment and Subtasks 35

Figure 4.5: Process Task 13.0 Participate in Life Cycle Management and Subtasks 36

Figure A.l: Preferred LOR Tailoring Method Example 43

Appendices

Appendix-A Preferred Level of Rigor Activities Table

iv

Revision Date
- 29 June 2016

A 17 October 2017

B 14 March 2018

JS-SSA-IG Rev. B
March 2018

Revision History

Description
Initial Release
Updated to incorporate annual JS-SSA member comments.
Text and figures updated to create tighter coupling
between IG and MIL-STD-882E Tasks
Out of cycle revision to incorporate JS-SSA approved
comments and recommendations resulting from U.S. Navy
initiated Carnegie Mellon (CM) Software Engineering

Institute (SEI) review of Rev. A. Comments resulted in
revising Section 3.9 Perform Code-Level Safety Analysis, as
well as CM SEI recommendations to clarify importance of
application within the software development life-cycle and
processes. Technical content and data structure is
unchanged. Corrects identified administrative and clerical
errors in text and figures.

v

1.0 Software System Safety Abstract

JS-SSA-IG Rev. B
March 2018

Software System Safety Engineering {SSSE) focuses on two primary objectives; first to design, code, test,

and support software with the appropriate Level-of-Rigor (LOR) to instill a confidence, or the assurance

of safe software; and to define the necessary safety requirements for the design, code, test, verification,

and validation of software that specifically target and mitigate the software "causes" of the defined

hazards and mishaps of the system. Each of these two objectives is covered in detail within the Joint

Software Systems Safety Engineering Handbook {JSSSEH). Requirements to meet the SSSE objectives are

specified in MIL-STD-882E. The challenge is getting Acquirers (Customer) and Developers (software

developers) to specify how they will turn the objectives of MIL-STD-882E and the JSSSEH "guidance" into

actual SSSE requirements. The objective of this document is to provide Department of Defense (DoD)

Acquirers and their Developers with the implementation details necessary to take the requirements of

MIL-STD-882E and the "guidance" of the JSSSEH and define the process and tasks required for a

compliant SSSE program. MIL-STD-882E and guidance of the JSSSEH will continue to be the parent

source for guidance on how to meet identified software safety engineering requirements. This

document is also appropriate for use by non-DoD entities developing software for safety-significant

systems.

This revision of the originally released version of this Implementation Guide focuses on correcting

known errors and inconsistencies in the document, create greater alignment between the document

and the parent MIL-STD-882E requirements and tasks, and incorporate results and lessons learned from

the successful initial release of the document. This revision maintains the core purpose and structure of

the original version, which is the process and tasks to implement and execute a MIL-STD-882E compliant

SSSE program as part of System Safety Engineering (SSE) and integrated within the overall software

development processes.

1

2.0 Specialty Task Outline and Process

JS-SSA-IG Rev. B
March 2018

This distillation of MIL-STD-882E and the JSSSEH into implementable process task requirements is

presented as a decomposition of parent and children activities in a process task numbering format. The

parent tasks are graphically represented depicting inputs to the tasks and the products that the task

would likely produce. Tasks identified as MIL-STD-882 requirements are coded in the graphics using an

extreme bold border of the task box. Task decomposition is to the level necessary for a basic

understanding of the process, the tasks that implement the process, and the products the tasks would

likely produce. The requirements derived that apply to each task will be specified and cross referenced

to both the applicable MIL-STD-882E requirements and JSSSEH sections and paragraphs that provide

guidance on meeting the requirements. As such, any DoD Acquirer or Developer should be able to

develop SSSE tasks and requirements that comply with MIL-STD-882E and the guidance of the JSSSEH.

Appendix A of this document is a LOR task table that should be used to develop the defined process

tasks necessary to meet M IL-STD-882E Table V LOR requirements. The LOR task table also supports

accomplishment of the MIL-STD-882E Tasks for the SSSE contribution to SSE. The LOR table should be

assessed for tailored implementation for any given program, and tailoring is permitted as long as the

tailored LOR tasks are approved by both the Acquirer and Developer.

3.0 Process and Process Tasks for Software System Safety (SSS)

The process for accomplishing a successful SSS program begins with the contract between the Acquirer

(typically a DoD Agency, Program, Project or Product Office) and the Developer (generally referred to as

the Developer or Software Developer). It is essential for the DoD Acquirer to adequately specify the SSE

and SSSE tasks and artifacts necessary to meet the requirements of MIL-STD-882E on contract. If the

Statement of Work (SOW) does not define the required Developer safety tasks and artifacts, then the

overall safety program is likely to not meet either the service-specific or the Joint Services safety

requirements. The vast majority of SOW tasks are reflected in Appendix A under SSE Tasks required for

adequately supporting the software system safety effort. Additionally, the SOW must specify the

frequency of meetings; Cont ract Deliverable Requirements List (CDRLs) items; and necessary reviews in

order for the developer to adequately bid their efforts.

The Acquirer must adequately plan for the tasks that will be required and implemented by the

Developer. This planning is accomplished prior to the Request for Proposal (RFP) (or contract change for

existing programs) and documented in the System Safety Management Plan (SSMP) as referenced in

JSSSEH Para 4.2.1 and detailed in Section 3.1 Process Task 1.0. Specific Acquirer tasks that must be

accomplished prior to contract award include (but are not limited to);

• Develop SSMP.

• Utilize the Mishap Risk Matrix, Software Criticality Matrix (SCM) and associated input definitions

of MIL-STD-882E, unless a tailored version has been approved in accordance with (IAW) DoD

Component Policy.

• Charter the System Safety Working Group (SSWG) to include all managerial, organizational, and

technical relationships.

2

JS-SSA-IG Rev. B
March 2018

• Develop Safety input to the RFP, SOW and other contractual documentation (this is where Tasks,

CDRLs, and required analyses, etc. should be specified, as well as when/where

delivered/documented). Required analyses should include: MIL-STD-882E Task 102 System

Safety Program Plan (SSPP), Task 106 Hazard Tracking System (HTS), Task 201/202 Preliminary

Hazard List (PHL)/ Preliminary Hazard Analysis (PHA), Task 203 System Requirements Hazard

Analysis (SRHA), Task 204 Subsystem Hazard Analysis (SSHA), Task 205 System Hazard Analysis

(SHA), Task 206 Operating and Support Hazard Analysis (O&SHA), Task 208 Functional Hazard

Analysis (FHA), and Task 301 Safety Assessment Report (SAR). As applicable, Task 209 System-of­

Systems (SoS) Hazard Analysis may be required.

• Define Acquirer specification safety requirements.

• Provide safety requirements input to other relevant documentation (e.g., Software

Development Plan (SDP), Test and Evaluation Master Plan (TEMP), System Engineering Master

Plan (SEMP), and Configuration Management Plan (CMP)).

• Work with the Program/ Project/ Product Manager (PM) to ensure the system safety and

software system safety program is adequately resourced and staffed.

• Ensure Acquirer Safety is part of the configuration control process (voting member of Acquirer

chaired boards, participant/reviewer of safety impacted items at the level (MIL-STD-882E Task

304). Evidence can be incorporated into the CMP and/or Board Charter(s).

• Perform analyses required to define the System Level Mishaps and interfaces/contributions

provided by supporting system elements (e.g., multiple Developers may be developing different

critical subsystems and each must account for their respective contributions to system mishaps) .

Figure 1.0 includes the initial process tasks required by the Acquirer and then transitioning to the tasks

required by the Developer after contract award. This document will step through the parent process

tasks beginning with Task 1.0: Prepare System Safety Management Plan. Subtasks (children to the

parent task) will also be presented and discussed to ensure that the reader fully comprehends the scope

and details of each major task described. Where applicable, references to MIL-STD-882E and the JSSSEH

are provided for further detail.

The SSSE process and tasks described in this document can be applied within an integrated system and

software development process regardless of software development technique. Current software

development best practices have shifted from the classical, aligned with the overall system development

schedule, waterfall process towards more rapid (e.g., Agile), model-based software development

processes. Current processes use varying terminology to describe their tasks and life-cycle phases.

However, at their core, all software development processes follow the "Establish the Program,

Requirements, Design and Architecture, Implementation, and Test and Verification" process steps. The

primary "difference" is that within the rapid, model-based software development processes, the

development steps are applied to smaller subsets of overall software functionality and capabilities

during a given development cycle and the process occurs within a much smaller timeframe than the

overall acquisition schedule. For example, the "Requirements Phase" may focus on taking the system

engineering domain architecture artifacts and developing Use Cases to implement the "Requirements

and Capabilities" specified by the architecture artifacts as opposed to a natural language Software

3

JS-SSA-IG Rev. B
March 2018

Requirements Specification (SRS). The tailoring of the LOR Tasks specified in Appendix A becomes even

more important to accomplish at program outset, to include updating of term inology to match the

software development, and subsequent integration within the software development process activities.

SSSE must be integrated within the software development team, as well, to both be able to provide SSSE

analysis in support of the software development effort and to ensure the development team is meeting

their SSSE LOR task requirements.

Process Inputs

Contract Award

\1
:- ____ J_ ____ _ ------ i

•,

MIL-STD·882E

Software Safety
Handbooks and

Compliance Docs

Prepare System
Safety Program

2.0 Plan

Sw System Safety
Program Criteria

,~ lOR Task Table

1

2.4 Appendix

'

DOD JSSSEH
Appendix E

AOP-52

PRE-CONTRACT ANO
REQUIREMENTS PHASES

,___ ____ _
c:::::J = Mll-STD-882E Requirement

Software Safety Process

Software Safety Deliverables or Artifacts

System Safety
Program Plan

I
I

Level-of-Rigor
Task Table

Figure 1.0: Initial SSS Process Chart for Pre-Contract and Requirements Phases

3.1. Process Task 1.0: Prepare the SSMP

PHA, FHA

(±\,

r
i

It is standard practice within an Acquirer's program office to develop a SSMP for a program (or family of

programs) . This document defines the Acquirer's requirements for the establishment, structure,

resourcing, and implementation of a system safety and software system safety activity for the program,

or family of programs, to be managed by an individual Acquirer program office. The SSMP must

document the system safety program requirements as established by applicable Federal and Civil law,

and DoD acquisition authorities. Subtasks to this process task are depicted in Figure 1.1.

4

JS-SSA-IG Rev. B
March 2018

'LI I. Hlfcrrti((' lJnc;ti;H it,

The following documents provide the basis for the format and criterion for the SSMP and this

implementation guide:

• DoD Instruction 5000.02, Change 3 - Operation of the Defense Acquisition System, August 10,

2017.

• MIL-STD-882E - Department of Defense Standard Practice, System Safety, May 11, 2012.

• DoD Joint Software System Safety Engineering Handbook, Version 1.0, August 27, 2010.

• RTCA D0-178C, Software Considerations in Airborne Systems and Equipment Cert ification, 2011.

• SAE Aerospace Recommended Practice (ARP) 4754, Certification Considerations for Highly­

Integrated or Complex Aircraft Systems, November 1, 1996.

• SAE Aerospace Recommended Practice (ARP) 4761, Guidelines and Methods for Conducting the

Safety Assessment Process on Civil Airborne Systems and Equipment, 1996.

Standard Practice

Prepare System
Safety Mgmt Plan

1.0 (Acquirer)

Obtain Inputs From
Acquirer Regs and

1.1 Policies

Obtain Inputs From Obtain Prepare SSMPfor
MIL-STD-882Eand ' Commitment From -:i Review and

1.2 Compliance Docs 1.3 Acquirer PM 1.4 Approval

Figure 1.1: Process Task 1.0 Prepare the SSMP Subtasks

MIL-ST0-882E, Task 102

Prepare System
Safety Program

2.0 Plan

Provide Inputs to

l.S RFP and SOW

:LI .L.. Prol l'S~ Sut1t:1sl, 1 1: Obtain lnp.its from Ani t·fn·r Hcgubtinn~ and Polil iC'S

The requirements for a system safety program are explicitly documented in MIL-STD-882E. The

Acquirer's specific regulations and policies provide the requirements for generation of the SSMP. The

SSMP must reflect the criterion established in these regulations and policies as well as in MIL-STD-882E.

Examples may include such things as Air Worthiness Certification criteria for air vehicles to the

requirements established by individual safety boards (i.e., regulatory, Service and Joint Safety Review

Boards) . The SSMP must include these additional safety program requirements that will aid the Acquirer

in meeting all certification or acceptance authority criteria. The SSMP should ensure that all of the

Acquirer's system safety and software safety requirements are adequately transitioned to the RFP and

the SOW, and ultimately flowed down to the Developer. This flow down of the SSMP ensures the

Developer's System Safety Program Plan (SSPP) supports the Acqu irer meeting their safety

requirements. Developers bidding on the contract must have a clear understanding of t he Acquirer's

expectations for the system and software safety engineering efforts. This allows the Developer to bid

and propose a system safety program based upon Acquirer requirements and expectations.

3. 1.3 Prnn·ss ~uht;i~!i l ./.: Oht<1ii: Inputs from r.~!I.-S n>-HB:n~; :inti C:nmp!iann· llort1!1H'llb

MIL-STD-882E, Task 101 provides direction on content for system safety program management.

Individual Acquirer programs may possess system safety requirements that are not explicitly covered in

5

JS-SSA-IG Rev. B
March 2018

MIL-STD-882E, regulations or policies, but deemed important by the Program Office. The development

of a SSMP must take into consideration the requirements that are defined by other compliance

documents.

Without Program Management "buy-in" regarding the necessity and Return-On-Investment (ROI) of a

comprehensive system safety engineering effort, the probability of successfully influencing the design

from a safety perspective is greatly reduced. The system safety program defined by the SSMP must

possess ~oncurrence and acceptance from the PM. This is the best opportunity for the System Safety

Manager to adequately communicate the system safety ROI to Program Management in terms of the

total life-cycle costs associated with mishaps as it affects human injury or death, programmatic costs,

schedule, operational readiness, operation effectiveness, and organizational reputation.

:-{.1.5 Proct>ss Subtask I A: i'n:'pan· SSMP l<n· Rt•Vit'w and i\pproYal

Ultimately, it is the Acquirer who must meet their respective program requirements. The SSMP defines

the path forward for all system safety efforts to be performed by both the Acquirer and the

Developer(s). This plan establishes the overall system safety requirements whereas the Developer's

SSPP defines the processes, methods, tasks, and tools to be implemented to meet the SSMP and

contracted safety requirements. The SSMP must also include all applicable requirements for the

establishment and implementation of a software system safety program.

Once the SSMP is produced and approved by Acquirer Management, the system safety requirements

language defined in the plan must be captured in each RFP and SOW that are published by the program

office to support the design, development, and test, of each program asset being developed or updated.

If the system safety requirements are not captured in the RFP and the supporting SOW, the Developers

will possess no contractual basis to perform the necessary tasks to complete a successful system safety

or software system safety program.

3.2. Process Task 2.0: Prepare SSPP

[Ref: JSSSEH Paragraph 4.2.1, Fig. 4-6, and MIL-STD-882E Task 102]

The SSPP is the document of compliance for the contract as it applies to system safety and software

system safety engineering. Figure 1.2 depicts the process subtasks as they apply to the task of preparing

the SSPP for approval. The Developer's SSPP, including the Software System Safety Program Plan

(SwSSPP) requirements, must define how the Developer's contractual safety requirements are flowed

down, implemented and verified by their development team, sub-developers, subcontractors, or

vendors.

6

MIL-STD-882E, Task 102

Prepare System
Safety Program

2.0 Plan

Obtain Inputs From
System Safety

2.1 Mgmt Plan

JS-SSA-IG Rev. B

March 2018

Mll-ST0-882E, Task 202

Perform
Preliminary Hazard

3.0 Analysis

Mll-ST0-882E, Para B.2.2.5

Obta in Inputs From
~ Compliance

2.2 Documents

Integrate Software
~ Safety Engineering -~

2.3 Criteria

Prepare Level-of­
Rigor Task Table

2.4 Appendix

Figure 1.2: Process Task 2.0 SSPP Task and Subtasks

Obtain Acquirer
-, Approval of SSPP &

2.5 LOR Table

The SSMP (or equivalent Acquirer document) defines the relevant compliance criteria from standards,

regulations, and handbooks, and defines the terms and term definitions to be used on the program and

to charter the SSWG. From the SSMP and Contract tasks, the Developer prepares the SSPP that defines

and documents the processes, tasks, and deliverables to be accomplished on the program to comply

with the contractual safety requirements. The SSPP should contain, as a minimum, the information

defined by MIL-STD-882E, Task 102 and the corresponding Data Item Description (D ID), Dl-SAFT-80100A,

System Safety Program Plan. If the JSSSEH is cited in the SOW, SSMP, and/ or SSPP, then this JSSSEH

Implementation document should be used to develop Software System Safety Progra m (SwSSP)

requirements.

The primary compliance document is MIL-STD-882. Depending upon whether this is a new acquisition

program or a fielded system in the Sustainment phase (such as a legacy program), the contractual

version of MIL-STD-882 may be Revision E or an earlier version . In addition, each DoD Service may have

separate compliance documents for software system safety. On aviation related contracts, aviation

specific compliance documents or standards may be required . This is important to understand because

each individual standard can use terms that are common to the safety community but possess totally

different meanings. As an example, the FHA as defined by SAE ARP 4761, Guidelines and Methods for

Conducting the Safety Assessment Process on Civil Airborne Systems and Equipment, has a different

purpose, content, and format as an FHA as defined by a MIL-STD-882E.

:L:L 3. •1roc l'~S Su ht ash ~.3: tntcgr.1k ~oil w.1n S~!kty Engi1weri11g Criteria

The specific processes, tasks, and deliverables to support SSS engineering should be complete ly

integrated into the main text of the SSPP. IAW with MIL-STD-882E requirements, the SSPP must detail

how the SSS requirements are going to be addressed for all safety-significant software (as software is

defined in MIL-STD-882E) within the system. The SSS input to the SSPP must address the requirements

for each development phase and also address validation and approval of tools, models, and simulations

that will be used in the development, support, and verification/validation of safety-significant software.

The SSS engineering criteria to be specified in the SSPP, and implemented, should be extracted from

both MIL-STD-882E and the JSSSEH.

7

JS-SSA-IG Rev. B
March 2018

[Ref: JSSSEH Paragraph 4.2.1.5, and 4.3.2, JSSSEH Figure 4-13, Table 4-3, and Table 4-4; and Appendix A­

Level of Rigor Task Table]

The SSPP must contain the comprehensive LOR Task Table that establishes both the Developer's process

and design requirements for SSS. The Acquirer, either via reference to the SSPP, or inclusion in the SSMP

must specify an initial LOR Task Table for the Developer to tailor and implement as part of their SSS and

software development programs. The LOR Table contains the specific required process tasks and design

requirements to obtain the necessary body of evidence that software introduces an acceptable

contribution to mishap risks for the program, as well as to implement and meet the intent of the general

requirements of MIL-STD-882. This confidence can only be obtained if the defined tasks for each

software development life cycle phase are successfully defined and accomplished. The subtasks of

Process 2.0 are presented in Figure 1.3.

Mll-STD-882E, Para B.2.2.S

Prepare Level-of-Rigor

Task Table
2.4 Appendix

I,
Obtain Inputs From

Compliance
] .4.1 Documents

Prepare LOR Task
Table

2.4 .2

Obtain
Concurrence From

2.4.3 Oev & Test

Int egrate Tasks

with Dev & Test
2 .4.4 Processes

Figure 1.3: Sub-Process Task 2.4 Prepare LOR Appendix to SSPP

Obtain Acquirer
Approval of SSPP &

2.5 LOR Table

Integrate With All
Program Plans

2.4.5

3.2.4.1. f'ron·ss S11bt11sk 2.4.1: Obit/ill LOH Task /11p11tsjrum Co1n11/i1111c<' /J11n1111e11t,·

Preparation of a LOR Table that will be accepted by the Developers' development team and approved by

the Acquirer and their independent safety reviews, necessitates that compliance documents become

the foundational input to the table. For example, in MIL-STD-882E, Table V defines the general LOR

requirements for each level of Software Criticality. The purpose of Process Subtask 2.4 is to take those

general requirements and then specify the specific implementation requirements the program will

execute to fulfill the MIL-STD-882E criteria. DoD Service requirements must also be assessed for

inclusion into the table, as well as the requirements of the various Service and Joint Safety Reviews.

For aviation-related programs, SAE ARP 4754/4761 and RTCA D0-178C, Software Considerations in

Airborne Systems and Equipment Certification, are called out for the purposes of ensuring that

airworthiness requirements are established and fulfilled to obtain an Air Worthiness Release (AWR). In

addition, each of the Services, either jointly or independently, may have unique LOR requirements for

specific subsystems that require separate approvals, such as fuze, ignition and laser subsystems.

3.2.1.2. /1ro{·1•ss S11/Jtas/.: 2.·1.2: l'n·11tll"I' tlle LOR J"11sk 'fa /Ile Appendix

An initial LOR task table is provided in Appendix A. An initial LOR task table can also be included in the

Acquirer's SSMP and provided separately by the Acquirer to the Developer. This table can be tailored

for each individual program's capabilities and requirements based upon the criticality, complexity, and

8

JS-SSA-IG Rev. B
March 2018

constraints of the program. All tailoring must be approved by the SSWG and the Acquirer. It is highly

recommended that the Acquirer obtain concurrence of tailored tasks from the various applicable review

authorities as well. Where tailoring is implemented, it must be adequately explained, justified and

approved.

Within the LOR Table, the critical ity is ranked in accordance with both the mishap severity definitions

and the software control category definitions of MIL-STD-882E. LOR ranking is from lowest criticality

Software Criticality Index (SwCI 5) to highest criticality (SwCI 1) as referenced in MIL-STD-882E Table V.

System Functions that are deemed Safety-Significant Function (SSF) IAW MIL-STD-882E are assessed for

their criticality (see Sections 3.5.2, 3.5.3, and 3.5.4) and are architected, designed, coded, and verified in

accordance with the LOR tasks documented in the program's approved LOR Table. LOR tasks must

include the software development process tasks, software test and verification tasks, and design

assurance features that are required for each SSF.

In reality, budgetary and schedule constraints may play a role in tailoring requirements. However, if the

budget and schedule do influence the tailoring process, it will likely produce more safety risk for the

system, or at minimum impact acceptability by review authorities. Table VI of MIL-STD-882E provides

requirements for notifying management and risk acceptance authorities of the consequences of lack of

LOR application. When potential programmatic or safety risks resulting from budget and schedule

impacts are identified, they may also require inclusion in the overall Program Risk tracking system to

maintain management visibility. Risk acceptance performed in one contractual activity should be

reassessed for the next contractual activity.

3.2.4.3. l'rncess Suhlask :..!.4.3: Ohtain LOR Co11nm·c11ce ji·om Dc\'C·/o11ml'llt anil TC'st

The software developers, architects, and testers must be integrated into the software SSE activities and

be involved with the definition and implementation of LOR tasks. This is an important step in that the

safety team must understand the system and software architecture to define the software criticality and

the derived LOR tasks. In addition, the software developers and testers must fully comprehend their

role in the execution of a successful software system safety (SSS) program. They must understand what

they are required to accomplish by LOR definition and safety assurance rationale of the tasks to be

accomplished. The software developers and testers should have an input to the definition and tailoring

of LOR tasks. Any task that is perceived to possess little ROI for the resources expended should be

flagged as candidates for tailoring with appropriate justification to include the potential safety risk

rationale.

3.2.4.4. Process S1Jbtask 2.4.4: f11fe.<Jraf f' /.(JR Tosl<s lt'ith De\·t:lopmc11t and fesl Proresst'S

The approved LOR tasks must be fully integrated into the software development, coding, and test

activities of the Developer. Some of the LOR tasks are accomplished by the system safety team,

whereas many are actually accomplished by the software design, code, and test teams. Those tasks

assigned to software development and test must be part of their defined processes as documented in

their planning documents.

9

JS-SSA-IG Rev. B
March 2018

:J.:.!.-1.S. }1/'llC'D.\ S11htask :.!..J.S: fllf('_(f/ '(I((' um Ta.\/(~ into f'ertinenl J'1 O,Y/'11111 P/011.\

The approved LOR Table tasks must be adequately documented in the applicable Developer

specifications, plans, and process documentation as requirements. Documents typically include:

Software Requirements Specification (SRS), SOP, Software Test Plan (STP), Software Configurat ion

Management Plan (SCMP), and Software Quality Assurance Plan (SQAP). The Developer must ultimately

be able to answer the questions "How did you meet LOR requirements?" and, "Where is t he evidence?"

The Developer's SSPP must be submitted for review and approval by the Acquirer to ensure it

adequately addresses SSE and SSS requirements and tasks, to include references to other Developer

documentation that may implement SSS requirements. This review and approval includes the approval

of the LOR Appendix. Acquirer approval of the LOR Table, including concurrence from their safety

review authorities, represents Acquirer concurrence that the tasks defined in the table are sufficient (if

implemented and evidenced) to provide the necessary assurance that safety-significant software is

being designed, coded, and tested in accordance with defined best practices. All LOR tai loring must be

explained and justified. As the program matures, changes to the LOR table should be coordinated with

and approved by the Acquirer (often via the SSWG) and Developer, as well as the applicable review

authorities.

3.3. Process Task 3.0: Preliminary Hazard Analysis

[Ref: JSSSEH Paragraph 4.3.4 and MIL-STD-882E, Tasks 201 and 202]

The software system safety process as initiated in Figure 1.0 continues as depicted in Figure 2.0 below.

Within the software development life cycle, this is considered the requirements and preliminary design

phase of development.

10

JS-SSA-IG Rev. B
March 2018

Process Input s (=:l = MIL·ST0-882E Requirement
rs.;ii;a~;(;n!:-Oi-1

System Baseline
Documentation

LOR

G
J,

De.sign
Handbooks

: ___ :.a~:.g2~~---J,
L ~~f~\~~~:~t.!.'!~~ },1

t Seventy Oefinrtions 1 • ______ i ______ ,

I

i,
Safety·Significant ' Assign SwCl/LOR r to each Sw kn I Functions , within SSF's

! Defined Design

Defined Process

Requiremenb

1------~ 4.0 Functional
Hazard Analysis

~

l\
I

I inputs
I

3.0 Preliminary

: J, Requirements

~~-:~J "'"~~·~ I
I 1 Requirements • Hazard Analysis

REQUIREMElllTS AND PRELIMINARY
DESIGN PHASES

Software Safety Process

Safety Deliverables
or Artifacts

Preliminary

Ha2ard Analysis

' ~· ~
GD ©
SHA HTS

Safety-Significant
Functions (SSF) List

System
Requirements Hazard

S.O Analysis

Software
Requirements
Specifications

Software
Planning Docs

SOP

STP

CMP

Figure 2.0: SSS Process Chart for Requirements and Preliminary Design Phases

Design
Review

"1

Figure 2.1 depicts the initial Developer PHA effort in Process Task 3.0. The PHA commences almost

immediately after contract award. Notice that the Functional Hazard Analysis (Section 3.4 Process Task

4.0) is likely to be performed concurrently with the PHA. This is considered acceptable because these

two analyses basically provide specific and essential information that brings accuracy and fidelity to each

individual analysis. The safety DID pertaining to the PHA is Dl-SAFT-80101A.

M IL-STD-882E, Task 202

Perform
Preliminary Hazard

3.0 Analysis

J,
Identify Haza rds

Perta ining to
3.lBaseline System

Ident ify Hazard

3.2 Failure Modes

Identify Hazard
~ Causes (HW/SW &

3.3 Human Error)

Identify Mitigation
---, .

3
.4 Requirements

Figure 2.1: Process Task 3.0 PHA Task and Subtasks

MIL-STD-882E, Task 208

Perform Funct ional
Hazard Analysis

4.0

Categorize Hazard

3.S wit h RAC

11

JS-SSA-IG Rev. B
March 2018

The PHA is performed under the responsibility of SSE and its scope is dictated by the SOW and contract .

The PHA is the initial analysis performed on the system for the purpose of the identification of potential

hazards and mishaps which are documented within the PHA. The PHA begins w ith development of the

PHL. The PHL, detailed in MIL-STD-882E Task 201, provides a summary list of potential hazards and

mishaps for the system, including those with software contributions. SSSE must support the

development of the PHA by providing assessment of the system's software within the context of the

system. Another important purpose of the PHA is to identify potential failure modes and causes of the

hazards in order to define (as early as possible) mitigation requirements for the system and software

specifications. Mitigation requirements should be defined as early in the analysis process as possible

and documented in the specifications, resulting in fewer derived safety requirements after the design

matures within the life cycle process. Section 3.6.3 provides discussion of Generic System Safety

Requirements (GSSR). During the PHA, mitigating requirements will likely consist of high level

specification requirements and GSSRs. The PHA is one of the earliest opportunities to influence the

design and design decisions regarding the use of software in performing SSFs. PHL and PHA results are

used to populate the initial Hazard Tracking System (HTS) records as defined in MIL-STD-882E, Task 106.

As the results of the PHL and PHA mature and evolve in subsequent safety analyses, the HTS records will

also evolve and mature.

[Ref: MIL-STD Task 202 and JSSSEH paragraph 4.3.4]

The preliminary mishaps and hazards are identified based upon the capabilities the system is to provide,

the preliminary design baseline, and the safety risk potential that the system could possess. Preliminary

hazards may be either formalized or eliminated as they are peer reviewed by system designers and the

SSE team within the SSWG. Regardless of the final disposition of the identified hazard, all hazards are

captured and documented in the HTS (MIL-STD-882E, Task 106).

Hazard failure modes are the primary failure paths leading to a hazard as represented in the example

logic diagram of Figure 2.2. In the depicted example, "Loss of Engine" is the system-level hazard with

four primary failure modes (there are likely others); Bird Strike; Loss of Fuel to Engine; Failure of Engine

Control; and Failure of the Compressor. It should be noted that these failure modes will likely be

tracked as separate sub-system-level hazards in a subsequent SSHA. Continuing the logic diagram lower,

it is evident that each sub-system-level hazard possesses individual failure modes. It is important to

accomplish the analysis for the PHA in a "top-down" manner in order to keep track of the context

between mishaps, system-level hazards, sub-system-level hazards, failure modes, and failure mode

lower-level causes. Once the hazard failure modes are identified, each failure mode can then be further

analyzed for specific causes from a hardware, software, and human error perspective.

12

Bird Strike

Failure of
Fuel Pump

JS-SSA-JG Rev. B
March 2018

Loss of Aircraft
Loss of Life - Mishap Effect

Loss of Control
Surfaces

Failure of
Fuel Line

F1ight Into
Terrain - Mishap

System-level

/ Hazards __ __ _
Controlled Flight

Into Ground Subsystem
Hazards

Failure of
Engine Control

Clogged Fuel
Line

I
Failure of

Compressor

Failure
/Modes

Out-of-Fuel
Condition

Figure 2.2: Example of Hazard Failure Modes Represented in Simple Logic Diagram

Both " loss of fuel to the engine" and " failure of engine control" events are likely to contain one or more

software causes (contributions to fault or failure). The PHA should continue as fa r down the causal

pathway as the design will allow in order for the definition of as many safety-significant software

mitigation requirements as possible early in the system's design cycle.

The PHA must be performed in such a way as to be able to see the context of how software reacts to

hardware and human operators, and how the hardware and the human reacts to how the software

functions. Hardware, software and human operator hazard causes must be addressed within the PHA to

ensure that functional and physical interfaces are included in the analysis. Note: It is essential that the

PHA and follow-on analyses be performed to the depth necessary for the identification of specific

hazard mitigation requirements that provide the evidence of sufficient AND-Gate protection (e.g.,

design redundancy) against the probability of failure propagation to the top event.

[Ref: JSSSEH paragraph 4.3.5.1.3]

Because the PHA is performed early in development, the hazard mitigation requirements that are

identified by the PHA and the FHA analysis might be more general (high level requirement) in nature.

Multiple derived lower-level requirements may be necessary to fu lfill a high-level requirement as the

design matures. This derivation of lower level requirements must occur as the system design matures.

From the SSSE perspective, it is important to understand context for potential mitigation requirements

13

JS-SSA-IG Rev. B
March 2018

that may be assigned t o software and to ensure their integration into the PHA and software

specifications.

Each identified and documented hazard and mishap is initially categorized in terms of mishap severity

and likelihood of occurrence. This initial RAC is assigned prior to any mitigation action unless there is

evidence of specific provisions, alternatives, and mitigation measures that have been verified to have

been implemented within the design to reduce risk. MIL-STD-882E defines severity and likelihood of

occurrence (probability) and must be used unless tailoring has been approved by the Program's DoD

Component Executive. Each hazard and mishap is assigned an initial risk assessment, commonly known

as a RAC, and documented in the HTS hazard record. RACs can be obtained from the Risk Assessment

Matrix as defined in Table Ill of MIL-STD-882E. Software does not have a probability of occurrence

component, so it is not necessary to assign a probability at the software causal level (of the hazard), but

the PHA should consider how a software cause(s) affects the overall hazard and mishap probability of

occurrence.

RAC is the allocation of severity and probability of the mishap when all hazard mitigations are

considered in the design and requirements are implemented for the procedures and training of

personnel operating and maintaining the system. In most instances, the severity of the hazard or

mishap will not change, unless the associated system capabilities and design changes. Changes in RAC,

from initial assignment to risk acceptance, will likely be a reduction in probability only. The PHA task

concludes with the capture of all PHA data in the hazard analysis worksheets that are imported into the

Acquirer-approved HTS.

3.4. Process Task 4.0: FHA

[Ref: JSSSEH paragraph 4.3.3, and MIL-STD-882E Task 208)

The FHA is another foundational SSE analysis performed under the responsibility of system safety

engineering and its scope is dictated by the SOW and contract. Additionally, virtually all safety review

authorities expect a FHA as part of the program's objective evidence for identifying and classifying the

system functions and the safety consequences of functional failure or malfunction prior to obtaining

review acceptance and concurrence. The FHA is one of the most important analyses that the system

safety analyst will perform. As the software implements functions within the context of system, it is

essential to understand which functions are safety-significant and which of these will be implemented

by the software. It is also important to ensure (by LOR analysis and test tasks) that the SSFs

implemented by the software perform exactly as intended and that they do not perform any unintended

functions. Further still, and given the fact that software will possess control over safety-significant

functions and that undesired events are likely to occur, it is important that fault/failure detection,

isolation, annunciation, and tolerance is built into the system and software design architectures. The

FHA is the first step in reaching these objectives. The Process Subtasks of the FHA are presented in

Figure 2.3 below.

14

JS-SSA-IG Rev. B
March 2018

MIL-ST0-882E, Task 208

Perform Functional

4
_
0

Hazard Analysis

j,
Functionally Document Identify Safety· M ap SSF' sto

MIL-ST0 -882E, Task 203

Initiate System
Requirements Hazard

S.O Analysis

/,,

Identify Failure
Mitigation

4 .9 Requirements
Decompose t he ·1 Funct ional Failure S1enificant J Software Design

4._1 _ S_ys_te_m __ ~ 4.3 Consequences 4.5 Functions 4.7 Architecture

" 'i' ---...,.1'--~ l 1'
,.....---~--..... ,-----\'---..... I ,.....----\'----... ,.....---"""'------.. I

ldent1f1cation of All

4
_
2

Functionality

Determine Severity Allocate SSFs to J Assign SwCl/LOR t o
of Functional Subsystems and each Sw Function _J

4 .4 Failure 4.6 Software 4.8 within SSFs

Figure 2.3: Process Task 4.0 Task and Subtasks

The FHA described here is not the same as the FHA described in SAE ARP 4761 that is required for

Airworthiness Release. There are different purposes for the two analyses. The primary purpose of the

FHA described in SAE ARP 4761 is the identification of mishaps and hazards by analyzing the system

functionally. Conversely, a primary purpose of the FHA described here and in MIL-STD-882E is to

identify all system functionality, determine which are safety-significant and implemented by the

software, and then map these SSFs to the software design architecture. Once mapped to the

architecture, mitigating requirements can be identified. By performing the FHA described here and in

MIL-STD-882E, the analyst will be afforded insight to the mishaps and hazards of the system. It should

also be noted that there is no reason why the FHA format cannot be formatted in such a way to meet

the intent and purpose of both SAE ARP-4761 and the safety FHA described here.

3.1 !. Prort'~S Suhtasi\ ·!.I: h111ctio11;1ll~· Dt•rnmirn~e tli(' Sysicm

The information contained in the FHA reflects the same level of maturity as the design architecture. This

is expected, and reinforces that the FHA must be kept current through all phases of the development

lifecycle, to include functional, physical, and contractual changes made under configuration control.

Frequency of updates to the FHA should be specified within the SOW and contract. However, SSSE

should update the software inputs to the FHA IAW the software development process and schedule . The

format of the FHA should reflect that which will provide the analysis "answers" required by the analyst

and criteria of the contract.

The first step of the analysis is to decompose the system. If the system is mature enough, this first step

may be a physical decomposition of the system. If the system has not yet been allocated to specific

pieces of hardware, this decomposition will be functional. The system must be analyzed functionally

from the perspective of both "what the system is documented to do functionally," and "what you think

the system can do functionally." The former is an assessment of documented functionality from the

functional specifications and the latter is assessed by analyzing the functionality of the physical

components of the system. The analysis of the physical attributes of the system is likely to provide

insight to "hidden" or undocumented functionality. This is especially true for systems heavily using

Commercial-off-the-Shelf (COTS) components.

15

FUNCTIONAL HAZARD ANALYSIS

System Individual Fundional Consequence of Seventy of Safety.
Decomposition Functional Failure Modes Eath Failure Consequence of Significant

Descriptions Mode Failure Modes Functions

Process Process Process Process Process Process
Subtask 4.1 Subtask 4.2 Subtask 4.3 Subtask 4.3 Subtask 4.4 Subtask 4.5

Figure 2.4: Example FHA Format

Assianment of
sec • nd swc1

Process
Subtask 4.8

JS-SSA-IG Rev. B
March 2018

M•pto Failure
Software Mitia:ation

Oesi1n Requirements

Process Process
Subtask 4.7 Subtask 4.9

Figure 2.4 provides an example of a FHA format that will provide the analyst with the most bas ic of

information required by the analysis. If the analyst (or the Acquirer) requires more than this simple

example format can provide, the format can be tailored to add the appropriate columns to the format to

identify and track the information required. The decomposition of the system is documented in Column

one. System decomposition can be done in a Work Breakdown Structure -like structure which may aid in

structure, flow, traceability, and assignment of responsibilities. For instance, on large, complex

programs such as an Aircraft (see Figure 2.2) the hazard "Loss of Engine" may be completely under the

control of the Engine Integrated Product Team (IPT). The Engine IPT is more likely to support safety if

the FHA can readily show the IPT which parts it is responsible for.

:L4.2. Prncc·~s Suhta~ li -L~· l1kntitkati11n ;d Al l f u l!ciion;tlity

Column two of the example FHA format in Figure 2.4 depicts where the system functionality is

documented. For the initial FHA, the functionality may be "higher level" functions that have not yet

been decomposed to lower level functionality. For an initial FHA this is sufficient for this level of analysis

maturity as lower-level functionality will likely take on the same criticality as their parent higher-level

functions. Ensure that all functionality is identified. First, identify what you think it can or should do

functionally. Second, compare the functionality identified with the documented functionality of the

functional specification and reconcile the two lists. Lastly, identify any functionality that is identified in

hardware literature or the performance specification to determine whether there are "hidden" or

unintended functions residing in the system. During this activity, it is also good to keep a list of

undesired functions from a safety perspective. It will be imperative to ensure that the system either

does not have the capability to perform undesired functions or that the system possesses the necessary

inhibits and/or interlocks in place to ensure these functions do not occur when they pose a safety risk.

:·L-l . '.~ . l'run•ss SuhL1.'tl\ ~.:~: !Jon111w nl Fu ndio n:il 1:a ilure Conscqrn•nrt•s

Once all known functionality of the system is identified and documented, each function must be

assessed against the following scenarios:

• The function is unavailable (does not occur when expected to occur).

• The function malfunctions (degraded, partial, or unexpected results of the function) .

• The function performs its intended activity but is out of sequence.

• The function performs its intended activity, but at the incorrect time (too early, too late, outside

defined window).

16

JS-SSA-IG Rev. B
March 2018

When documenting the consequences of functional failure it is important to understand that the

consequences can (and will likely) be different for each of the failure scenarios described above. Each

functional failure consequence must be documented in the FHA table.

:·L1.·L f'rcH·1.·s.., Su!i!a<.k 'IA; Dl'tt•r111i11l ~('\t'I ity of !71mrtio11al Liii11n· <.011st·qtt('IH"('\

After all functional failure consequences are adequately identified and documented, each must be

assessed against the hazard and mishap severity definitions as defined by the SSPP. This is only an

assessment against severity of the consequence and not the likelihood that it will occur. Once a

severity allocation is determined for each functional failure scenario consequence, these allocations are

documented in column five of the example FHA depicted in Figure 2.4. MIL-STD-882E Task 208 specifies

inclusion of a probability component to the analyses. If specified for the program, a column should be

added to the analysis worksheet to document the probability assigned for the function to be allocated

to the functional design. Assignment of both severity and probability components of the RAC to each

SSF supports management risk decisions. The probability of a function fa iling or malfunctioning as a

causal factor to a hazard must be accounted for within the context of the hazard (record) that it applies.

Each functional failure consequence is assessed against the severity definitions and formally

documented in the FHA. For an individual function, there may be multiple severity consequences, and

severity of consequences for that function. However, the function is assigned the worst-case severity

consequence as determined by the analysis. The functions will be identified as having a safety

consequence or no safety consequence based upon their linkage to a mishap/hazard. Those with a

safety consequence will be referred to as SSFs and be assigned to the following two subcategories:

• Safety Critical Function (SCF) : Functions that possess either a Catastrophic or Critical severity

consequence

• Safety-Related Functions (SRF) : Functions that possess either a Marginal or Negligible severity

consequence

As SSFs are identified and classified as SCF or SRF, each must be allocated to the respective subsystem

and software that implement them. The initial version of the FHA, performed early in the program, may

only be able to allocate SSFs to major subsystem and the software levels only. However, as the FHA

evolves and is updated as the design matures, the allocation to specific subsystems and software

implementation must be specified. The greater the fidelity of the allocation of SSFs to subsystems and

software, the more effective SSE will be in working with the design and architecture, software

development and test teams in focusing required hazard mitigations and LOR resources.

Once all SSFs have been identified, the analyst must map each function to its software design

architecture (to either software modules of code or "use cases" in Object Oriented Design (OOD)). This

is required both for end-to-end traceability of requirements and to support subsequent detailed

17

JS-SSA-IG Rev. B
March 2018

analyses. This will be important when specific hazard analysis is accomplished and software causes to

hazards are identified and analyzed. This mapping will provide the analyst with a defined point of entry

to the software in order to analyze the software's contribution to hazard initiation or propagation. This

mapping will also allow the analyst to determine the simplicity or complexity of the design of the SSFs

and the effectiveness of functional and physical partitioning of the software design architecture. An

example of the SSF mapping that is required is presented in Figure 2.5. The SwCI is determined in the

next section (3.4.8) although it is represented in Figure 2.5. Mapping the SSFs to the software design

architecture supports the derivation of the SwCI since it may be necessary to define the software control

category, a key element of the SwCI.

(Funct;on) ['---sw-CI)[_____ cs____.c1)(_cs ___ c)[_____ cs_u)

Weapon Firing SwCI 1 Missile Weapon Firing Target Acquisition
...... ~?.~ .. ! .. -.~i·~·~ ····· ·

Target Authenticate

Figure 2.5: SSF Mapping to Software Design Architecture Example

Missile Fire
Command

[Ref: MIL-STD-882E paragraph 4.4.1 and JSSSEH paragraph 4.2.1.4]

Software's functional criticality as described in MIL-STD-882E, Table V, is determined by the unmitigated

severity of the consequence of functional failure (or malfunction) in conjunction with the software

control category assignment as defined in MIL-STD-882E, Table IV. The result is the SwCI assignment

from SwCI 1 to SwCI 5. The SwCI will be assigned for each function assessed. The SwCI assignment

becomes the LOR by definition and provides the software developers and testers with the safety

assurance requirements for the design of each.

Process subtask 4.8, depicted earlier in Figure 2.3, identifies the assignment of SwCI to each software

function with identified SSFs. Allocation of SSFs to specific LOR categories is essential, both to ensure the

provision of rigor to the functions of highest safety criticality and to ensure the management of the

critical resources necessary to implement that rigor. This Process task can be integrated into the

accomplishment and documentation of the FHA. Regardless of whether it is included in the FHA or

accomplished separately, the accomplishment of the specific subtasks comprising subtask 4.8, identified

in Figure 2.6, must be performed for each SSF and be thoroughly documented within the artifacts of the

safety analysis.

18

MIL-ST0-882E, Para 4.4.1, 4.4.2

Allocate SSI 's to
Subsystems & Sw

M•P. S.5F's toA1chitecture
4.6 4.7

I
i

4
Assess SSF Against
Software Cont rol

4.8.1 categories

Assess SSF Against
~ Consequence

4.8.2 Severity

Combine SCC and
Severity to asign

4 .8.3 SwCI

Figure 2.6: Process Subtasks for 4.8 Assign SwCl/LOR

JS-SSA-IG Rev. B
March 2018

3.4.ll. J. Prnc cs., Sahl as/< 4.lU: Asse~s SSF ayai11st Sojlware Cont /'o/ Cate,qories (SU.]

MIL-STD-882E, Table IV defines the secs. These definitions may be tailored if change is warranted.

However, all tailoring must be thoroughly justified and approved by the appropriate Acquirer authority

in accordance with MIL-STD-882E. This subtask focuses on the assessment of SSFs against the defined

definitions of the secs documented in the SSMP and SSPP. Accurate assessment of the sec based upon

the complexity of the system, autonomy of the system's functionality, and/or its command and control

authority is imperative.

3.4.R.'L. ProN'.\S S11l;t11sl< 4.U.l: 11.\sess the SSF for the r:o11s1•q11 e11n· S1·1•erity

This task should have been accomplished and the information documented in the FHA. Th is information

is also required at this point to assess the criticality of the SSF against sec and the worst-case Severity

criteria for the purpose of assigning the LOR to the function .

. i.4.113. P1·on·ss Subtask 4.l?.:1: Combilw S('(.' w ul Severity to Assi.<Jll Si~·('/

The Software Safety Criticality Matrix (SSCM) provides the LOR allocation for SSFs. MIL-STD-882E Table

V defines the SSCM. Once the sec and the severity of consequence of the hazard/mishap are

determined for a SSF, the LOR can be determined by the predefined and approved SSCM. The SwCI

specifies the LOR value for SSFs and is determined by combining the sec and the severity of

consequence (from the FHA), which were previously assigned to the SSF.

3.4.fU. Process Subtask 4.RA: Ass(qn tile LOR tv tile SSF

Combining the activities of Process Subtasks 5.2 and 5.3, the LOR can now be assigned to the assessed

SSF. An LOR assignment of 1-5 is allocated to each SSF and the SSF must be designed, coded, tested,

and verified against the approved LOR criteria.

Specific software contributions to hazard and mishap fai lure conditions must be adequately mitigated as

a design priority. As insight and design maturity is obtained, insight as to how the system is to function,

its physical characteristics, and the potential failure pathways to hazards, must be used to determine

whether adequate mitigation is either present or absent in the design. If adequate hazard mitigation is

already present or accounted for in the form of preliminary (either generic best practice, or from the

PHA) requirements, those requirements should be tagged for follow-on safety verification and

19

JS-SSA-IG Rev. B
March 2018

validation. However, if the FHA identifies a shortfall in hazard control, mitigation requirements must be

identified and documented and communicated to the system engineering and software development

teams for inclusion in the applicable system and software requirements specifications. The initial FHA

task concludes with the capture of all FHA analysis data in the hazard analysis worksheets that are

imported into the Acquirer-approved HTS.

3.5. Process Task 5.0: Initiate System Requirements Hazard Analysis (SRHA)

[Refer: JSSSEH 4.3.5 and MIL-STD-882E Task 203]

The primary mechanism to "influence the design" in order to reduce the safety risk is to define specific

safety-significant requirements and include them in the system and software specifications. Safety

requirements are the primary mechanisms to fulfill the first step in the system safety order of

precedence; design for minimum risk.

MIL-STD-882E, Task 203, if specified by the contract is to perform and document a SRHA to determine

the design requirements to eliminate hazards or reduce the associated risks for a system, to incorporate

these requirements into the appropriated system documentation, and to assess compliance of the

system with these requirements. Within the JSSSEH, this process task is Section 4.3.5 Safety

Requirements Analysis {SRA). Regardless of whether M IL-STD-882E, Task 203 is specified on the

contract or not, the requirements analysis tasks must be performed as part of the SSE process. The

J5SSEH SRA task executes a process to ensure that the safety constraints and criteria of the system are

aligned with the safety requirements of the system to minimize the safety risk potential of the hazards

within predefined Concept of Operations (CONOPS). Safety requirements to minimize the safety risk

potential that are present in the specifications, are tagged as safety-significant. Tagging of requirements

usually takes place in the Developer's requirements management and traceability toolset. Where

requirements are absent, they must be defined, documented, tagged, and included into the

specifications. If the new system safety requirements (SSRs) are not added to the specification, the

contribution to the applicable system risk(s) must be included in the hazard analysis risk assessment.

The subtasks for initiating the JSSSEH SRA process are defined in Figure 2.7. The results of the SRA must

establish and provide evidence of bi-directional traceability (top down and bottom up) from safety

criteria and specifications to design, implementation, Verification and Validation (V&V) and mishaps and

hazards. The JSSSEH SRA task accomplishes many of the requirements specified within Task 203 SRHA.

However, there are additional items prescribed by Task 203 SRHA that must be accounted for if that task

is specified on the contract. Figure 2.7.l specifies the additional Task 203 SRHA subtasks that must be

accomplished to successfully address that contractual analysis.

20

JS-SSA-IG Rev. B
March 2018

JSSSEH 4.3.S Mll -STD-882E, Tasks 204 and 205

Initiate Sefety
Requ irements

S.O Analysis

Review System and
functional

S.l Specifications

Identify and
Tag

5.2 CSSRs

Identify and
Tag

5.3 GSSRs

Identify and
Tag

S.4 MSSRs

Perform SHA/SSHA
6.0

Complete Process
-> Subtasks of figure

S.5 2.7.l

Figure 2.7: Process Task 5.0 Initiate Safety Requirements Analysis Task and Subtasks

Mll-STD-882E, Task 203

Output of Process

5 .5 Task 5.4

I

i
l Define Verification

and Validation for
each SSR

Incorporate into
Design Documents,

Specs, and Test Plans

5.7

Assess complia nee
~ of System Hw and

Swwith SSRs
5.8

Perform SHA/SSHA
6.0

' I

Figure 2.7.1: Initiate System Requirements Hazard Analysis Task and Subtasks

This subtask involves a review of the system and functional specifications for t he system in

development. The primary purpose of this task is to identify and include t he missing requirements from

a safety perspective. SSS should be a part of the configuration control process. SSS must provide their

inputs to the requirements identification process in a timely manner. SSS must thoroughly review the

preliminary specifications, as well as proposed requirements change actions, and determine where

safety-significant requirements are necessary for incorporation.

:~.!l.l Prntt'~' Snht;t\!i !l.~: ldt'11tify ,rnd Tag Contdln~tlllg Safety-Sig11ific.1r1t Rt'qufrernt'11t'

fCSSHJ

Requirements that are safety-significant must be identified and tagged. For example, a requirement to

"Issue Fire Command" is a safety-significant requirement because it "contributes" to the safety risk

potential of the system, it does not mitigate it. Subsequently identified and tagged derived lower leve l

requirements provide the actual mitigations to mishaps associated with "Issue Fire Command."

:·L !l."~. Pron·<;s S1ihtas1< r,,;:!; !tit'!llily a11d Tag c;ssR

This task focuses on the identification of initial (generic) safety requirements for the system and getting

them included into both the hardware and software specifications. These GSSRs are based on:

• Lessons learned from other programs.

• Similar systems hazard analysis.

21

• Generic lists of "best practices" (e.g., JSSSEH Appendix E; STANAG 4404).

JS-SSA-IG Rev. B
March 2018

• The safety implications of the choice(s) of particular programming languages and development

processes.

• Historical mishap data on similar system.

• User (operator, maintainer, supporter, etc.) inputs.

• Information gleaned by accomplishing the PHA.

• Information gleaned by accomplishing the FHA.

(r.SSHJ

MSSRs are safety significant requirements that specifically provide mitigation of identified hazard and

mishap causes. MSSRs can only be identified if hazard analysis is accomplished to the detail level

necessary to specifically derive new requirements that mitigate a cause of the hazard by reducing the

likelihood of causal initiation and/or causal propagation.

MSSRs can also be derived by decomposing higher-level requirements such as GSSRs into lower-level

requirements for the design. Higher-level GSSRs, such as "The system shall initialize into a known and

predefined safe state," must be decomposed to lower-level requirements that mitigate the possibility of

initializing into an unsafe state or define specific safe states of the system. These lower level

requirements can only be identified, in this specific example, after the specific steps of initialization are

defined and the unsafe states or conditions of the system identified. As with all the safety-significant

requirements that are identified and tagged within the requirements management and traceability

application, they must be traced both to design, and back to the hazard(s) that it helps to mitigate. In

addition, all safety-significant requirements must take on the LOR criteria of the function that it is

implementing within the design architecture. The initial SRHA task concludes with the analysis of all

requirements documented, an associated assessment of all requirements gaps and an assessment of

compliance of the development of the system hardware and software with identified SSRs. Results from

the analysis are imported into the Acquirer-approved HTS.

As the design of the system matures, the SRHA must also mature. The maturation of the SRHA will be

covered in Process Task 7.0, Finalize SRHA.

:i.S.S. Prnn•so,; Suhta~ii. S.S: Don1111t·11r Output ol Sf<:.\ Stt·ps

The purpose of this task is to document the results of the SRA task into the Acquirer specified format of

the SRHA, if the SRHA Task 203 has been specified for the contract. The results of the SRA task will

completely satisfy the SRHA requirement or provide core input to the SRHA.

:·LS.6. Pron•ss Suiitasl\ S.<1: Ddftll' Vl'ril:califlli a!HI \'a!hi;1tiou tm E; ('h SSR

The purpose of this subtask is to define the verification and validation approaches for each SSR

identified to eliminate hazards or reduce associated risk. The verification and validations methods are

typically classified as:

22

JS-SSA-IG Rev. B
March 2018

• Inspection - An examination of the item against applicable documentation to confirm

compliance with requirements.

• Analysis - Use of analytical data or simulations under defined condit ions t o show theoretical

compliance. Used where testing to realistic conditions cannot be achieved or is not cost­

effective.

• Demonstration - A qualitative exhibition of functional performance, usually accomplished with

no or minimal instrumentation.

• Test - An action by which the operability, supportability, or performance capability of an item is

verified when subjected to controlled conditions that are real or simulated. These verifications

often use special test equipment or instrumentation to obtain very accurate quantitative data

for analysis .

:1.5.7. Prorl'~S Subtask S.7: l11corpura!t• Each SSR into the Applicahll' Dorn111e11ts

SSRs identified and approved must be incorporated into the applicable engineering design documents,

and hardware, software, and system test plans.

:~.!1.H. •'nH 1~s<; Suht a'>l< !1.H· ,1ss1·ss Cnmp:i;inn· of tl1e S\·stem H;ird\\ are ;ind Softwarl' \\'ill:

SSH'>

As the program proceeds and the design evolves and matures, the SSE must continue to analyze the

system and software design, architecture, hardware, and software for compliance with the SSRs. SSRs

must be addressed at all contractually required technical reviews, and SSE must address the hazards,

mitigation measures, and means of verification and validation for SSRs at technical reviews. As test

plans are developed and executed, both the plans and results must be reviewed for compliance with

SSRs. Ultimately, at the end of the SRHA effort, applicable mitigation information must be incorporated

into manuals and plans.

3.6. Process Task 6.0: Pe rfor m System and Subsystem Hazard Analyses

[Refer: JSSSEH paragraph 4.3.6 and MIL-STD-882E Tasks 204-206, and 209 for SoS]

As the system design matures, the hazards identified in the PHA and the failure modes identified in the

FHA must be transitioned from the PHA and FHA to the SSHA and the SHA as defined in Figure 3.0. The

SSHA and SHA are SSE analyses performed under the responsibility of SSE and their scope is dictated by

the SOW and contract. Whether the SSS analyst is working at the system level or the subsystem level

analysis, this is the phase of the program where in-depth causal analysis typically takes place due to the

availability of documentation for a maturing design.

23

JS-SSA-IG Rev. B
March 2018

Process Inputs c:J = Mll-STD·882E Requirement

Maturing System
Design

I

Safety·Significant
Functions (SSF)

l __ ~
PHA

@--' Perform

6
.0 SHA/SSHA

Specific Mishop/ _.,..
Hazard Causes

DETAILED DESIGN AND

IMPLEMENTAnON PHASES

Software Safety Process

Safety Deliverables
or Artifacts

FMEA/FMECA

Reports

SSHA

SHA

O&SHA

. ----- ~

System Specs

Softwore
Requirements
Specifications

Finalize System
Requirements

Haza rd Analysis
7.0

- ..)
Perform

Requirements
8.0 Traceobility

----------------------> i

Hau rd
Tracking
Database

Traceabil ity I

Requirements
Traceability

Database

Figure 3.0: SSS Process Chart for Detail Design and Implementation Phases

Regardless of SSS analysis techniques used, it must have the ability to allow the analyst to:

• Map or track SSFs to specific modules (or use cases) of code.

STP t

• Possess insight into the software's functional and physical interfaces with hardware, other

modules of software, or the human interface with the system.

• Provide insight to both the system and software design architecture.

• Comprehend what could functionally take place within the software design or code based upon

loss of function, degraded function (or malfunction) or functioning outside the bounds of the

predetermined parameters of timing and sequencing events.

• Determine where fault management should reside within the software design architecture (fault

detection, isolation, annunciation, logging, tolerance, and/or recovery).

The process subtasks of Process Task 6.0, Perform SHA/SSHA are depicted in Figure 3.1 below.

24

MIL·STD·882E, Tasks 204 and 205

Perform SHNSSHA

6.0

Integrate Haza rds
From PHA

6.1

Identify&
Doc.uments New --)'

System/ Subsystem
6 .2 Hazards

Pe rform Causal
Analysis on

System/ Subsystem

6.3 Hazards

Derive Specific

~ Mitiga tion ~

6.4 Requirements

JS-SSA-IG Rev. B
March 2018

MIL·STD·882E, Task 203

Fina lize System
Requirements

7 .0 Hazard Analysis

Ca tegorize Hazards
with RAC

6.5

Figure 3.1: Process Task 6.0 Perform In-depth Hazard Analysis and Subtasks

:~.(1.1. t'niccc,<.: S11l;t;1sk <d; /11tegratt· H<?z.1rds frnrn th1· Pi!..\

This subtask was introduced in the previous paragraphs. From the total set of hazards considered in the

prior phases of the safety program, only those that are determined to be credible for the system and its

intended test and operational environments are carried forward to the SSHA or the SHA. In addition,

some of the hazards may be transitioned to either the O&SHA or the Health Hazard Analysis (HHA).

The purpose of the SHA and SSHA is to take the safety information generated in the predecessor PHA

and FHA, combined with safety assessment of the system interfaces and maturing subsystems t o

identify system and subsystem hazards. The more architecture and design specific SHA and SSHA will

likely yield new hazards that were not discovered during the PHA and FHA. Identified subsystem and

system hazards are formally entered into the SSHA and SHA worksheets and each must be analyzed to

ensure the hazard risk assessment and associated RAC is reflective of the matured design,

implementation and mitigations.

This task requires access to up-to-date and accurate system design documentation. Regardless of the

methods or tools used to perform the causal analysis, the results must be at a level:

• Necessary to either account for mitigation already in the design arch itecture (probably as the

result of the GSSRs included in the early versions of the specifications), or to derive MSSRs

where mitigation is either absent or insufficient.

• Sufficient to account for software causal factors (either as causal initiators, or causal

propagations).

• Sufficient to comprehend the interdependencies and interfaces between hardware, software,

and human error causes.

• Necessary to account for physical, functional, or contractual interfaces between the system

integrator and other sub-developers or vendors.

• That validates the rationale to discontinue analysis at a lower level (further down the causal

pathway to its root source).

25

JS-SSA-IG Rev. B
March 2018

One of the best ways to determine the adequacy of the design architecture in context with the systems'

functional and operational environments is to accomplish a simple logic diagram (event or fault tree) of

the hazard and its causal pathways. This provides a graphical representation of the hazard causes in

conjunction with the Boolean "AND" and "OR" logic required to accomplish an estimation of the

adequacy of the probability of occurrence. If a quantitative Fault Tree Analysis (FTA) tool is utilized as a

method to understand the design logic, the failure probability of software functionality should be set to

"one (1)" to understand the control of the software within the system context and impact to top-level

event failure probability and cut sets. This will help to demonstrate the dependency of the software

functionality on the design architecture.

:·t6.4. Prote.'S" Suht'ask (~.4: De1 i\·1· ~pecific Mitigation Rt>quin'llll'!1ts

[Ref: JSSSEH paragraph 4.3.5.l.3 and 4.3.5.2)

As stated above in process subtask 6.3, the hazard causal analysis will either confirm the existence and

adequacy of hazard mitigation, or it will determine that it is either nonexistent or inadequate. In the

latter case, the remaining safety risk potential must be adequately dealt with from a hazard mitigation

perspective. This task requires that specific mitigation requirements be derived and successfully

included in the design maturation process, such as the system safety program documenting a Change

Request to explicitly identify an existing design requirement that implements the identified mitigation as

part of the program's CCB process.

[Refer: MIL-STD-882E paragraph 4.3 and subsections; and JSSSEH paragraph 4.4.4)

Upon completion of the causal analysis and assessing the adequacy of the mitigation or control of each

hazard failure mode (propagation pathway), each hazard and mishap is then reassessed against the risk

assessment criteria of the SSPP. Each hazard record should be assessed for its RAC and that RAC should

be annotated in the record. Each hazard analysis task concludes with the capture of all safety analysis

data in the Acquirer-approved HTS in the form of individual hazard records.

3.7. Process Task 7.0: Finalize SRHA

[Refer: JSSSEH paragraph 4.3.5 and MIL-STD-882E Task 203)

Process task 5.0 was the initial SRHA, performed early in system development. Task 7.0 represents the

culmination of the SRHA during the SHA and SSHA efforts of process task 6.0. This task will ensure that

safety requirements analysis is formally completed and adequately documented. This formal

documented safety artifact will be an essential document to be revisited for future updates or changes

made to the system. The subtasks of this process are presented in Figure 3.2 below.

26

JS-SSA-IG Rev. B
March 2018

MIL-ST0-882E, Task 203

7.0
Ftnahze SRHA

I
L~

Reassess System
Safety

Requirements

7.1 (SSRs)

Specify New
, System/Subsystem

7.2
SS Rs

A'i~es!i. Compliance of
System/ Subsystem
Hw & SW with SSRs

7.3

Mll-ST0-882E, Task 401

Perform
Requirements

8.0 Traceability

'r
,,...-A-ut-ho-r A-p-pr-op-ria-tc--..... I

Change Requem ~

Against
l7 .4 Requirements

Figure 3.2: Process Task 7.0 Finalize System Requirements Hazard Analysis

:i. 7. l Pnicl'ss ~uht?.sk 7 1: Hcil~Sl ~s S~Hs

SSS must first reassess the GSSRs and MSSRs defined for the program as part of Process Task 5.0 Initial

SRHA. There must be evidence within the design architecture or design processes that these

requirements have been adequately addressed. Traceability from GSSRs to these artifacts must be

evident. MSSRs must be reassessed to determine those initial MSSRs that must be further decomposed

and allocated based upon the results of the SHA/SR HA.

This task formally wraps up and documents the specific GSSRs and MSSRs to mitigate and control the

SSHA and SHA hazards. Much of this effort was accomplished in process subtask 6.4, but it is important

to finalize the SRHA documentation in this area. Traceability from SSRs to the design must be evidenced

and documented in this phase of development.

:l.7.:-<. l'n:n'\S ~'!11tasi.; 7.:-{: Asst' ~s C.m:;pJial't·c oi S\ o,t(·m/St1hsystcm H;;nh\<1n· and

Snftw.1i·e \\' it h '.'\\fh

As with process subtask 7.2, this process subtask is also a summation of the efforts that were

accomplished to finalize each hazard record in Process Task 6.0 and assess the current RAC. The

software test cases and procedures must be reviewed to ensure that the testing actually verifies the

safety-significant requirements in context to their intended or expected functionality. Further

discussions regarding test is provided in Process Task 10.0. Traceability is from safety-significant

requirements (or functions) to design, and then to software test cases and results. Traceability must be

documented and provided as evidence.

:·L'/ ·L Prol't"iS Suhtas!\ 7.4 : 1\11t!:or /\pprnpda tl' Cilangt: Relp!<'sts agai11:-.t flpq11ircrn1•11t-;

This process subtask is also a summation of efforts accomplished in process task 6.0. As the software

design is being reviewed and design reviews are accomplished, incorrect interpretation of the safety­

significant requirements must be identified and adjudicated. The actual documentation associated with

a defect or deficiency will be governed by the configuration management tools used and the

Configuration Management Plan. The primary cause of software defects is poorly defined, ambiguous,

unclear, incorrect, or missing requirements. Therefore, the SSE should work with the requirements

team and engineering teams to author any necessary requirements inclusions or clarifications that

27

JS-SSA-IG Rev. B
March 2018

remain for action to reduce safety risks . The SRHA concludes with the analysis of all requirements

documented and the results from the analysis included in the Acquirer-approved HTS.

3.8. Process Task 8.0: Perform Final Safety Requirements Traceability

[Refer: JSSSEH paragraphs 4.3.5.3, 4.3 .6.3.3)

An important task of SSS is the preparation of the safety-significant engineering artifacts that provide

the evidence or audit trail of the SSS work accomplished. As depicted in Figure 3.3, the SSRs of the

system must be sufficiently traced to the design and also back to their corresponding hazards and

mishaps to complete the evidence audit trail. Much of the work required for this task has already been

performed during the previous analysis tasks. As such, this Requirements Traceability task is intended to

be a final assessment of end-to-end SSRs traceability prior to conducting software testing and Code-level

Analysis for LOR-1 software. The importance of performing this final assessment of traceability is to

reduce the risk and impacts of either failing to adequately test SS Rs or having to do separate, late testing

of SSRs.

Perform Final
Requirements

8.0 Traceability

Trace Safety
Requirements

8.1 To Design

Trace Safety
~ Requirements -,

8.2 To Hazards

JSSSEH, 4.3. 7 .3.2

Perform Code·level

9.0
Analysis

M IL-ST0-882E, Task 401

Perform Software

lO.O Test Planning

Trace Safety
Requirements

Implementation
.3

Figure 3.3: Process Task 8.0 Perform Final Requirements Traceability and Subtasks

'i.B.1. i'l"<!lL'~~ Suhlasl\ 8.1: Tt·;ice ~alt•ly lkquin.•nwnls to ne~ign /\rchilL'Clun:

As depicted conceptually in Figure 3.4, there is traceability from the hazard/mishap record, where

causes are determined and mitigations identified via mitigation requirements, to the design

implementation of the requirements within the system design architecture. This traceability from

hazards to the design is essential to ensure mitigation requirements are complete, correct, consistent,

implementable and verifiable.

28

Verification of Hazard

Mitigation

r I ~~!1J!)})
Verification of Design

Implementation

System Design
ArchitectIJre

Mitigation
Requirements

1
Requirements

Implementation

17'
Figure 3.4: Hazard Closed-Loop Requirements Traceability

:·LH.2.. Procl'<;S Subtask H.l: 'I rarl' Saft>ly ffrqn ircwcn ts to Hazards

JS-SSA-IG Rev. B
March 2018

To complete the closed-loop hazard mitigation process, safety requirements are traced from the design

and their verification back to the hazard/mishap record to formally provide the evidence of hazard

mitigation and control. This traceability flows from the system design architecture and the

requirements verif ication back to the hazard/ mishap to confirm the mitigation and control of hazard

causal factors (refer to Figure 3.4) .

3 .H :{. Pron·s\ Subta~k B.:·L Trac<' S<l!<'ty Ht·quirem1·11t s to lmpk:1H·11!ati1m

The traceability of safety requirements to the design architecture must include the implementation

within the software code. This implementation will later be verified in accordance with the approved

Software Requirements Verification Matrix (SRVM).

3.9. Process Task 9.0: Perform Code-Level Safety Analysis

[Ref: JSSSEH paragraph 4.3.7.3.2]

As depicted in Figures 3.3 and 4.0 and depending on the LOR assessed, Code-Level Safety Analysis is the

next step of the software system safety process. Code-level safety analys is is required and called out in

the LOR table for LOR-1 software.

29

Process Inputs
Updated
Software

Specifications

Software Code
(various Builds)

TEST PHASE AND
DEPLOYMENT PHASES

Safety

RQMTS

~
I
I

Software Review

Perform
I

Software Test -T--I
~lOii.llitOllitPtiilailil!nliltnitiinlillll_,. ! 1

': I J
I
I
t

--------· ' Software Test
I
I
I
I
I
I

Software De fe ct
Reports

,,
I
I

: .I
Monitor Safety·

"'----- ----· -- Sign ifica nt
1.0 Testin

I
I

Software Safety Process

I.

Safety Deliverables
or Artifacts

Software Code
Final Build

Software Test
Reports

JS-SSA-IG Rev. B
March 2018

c:J = Mll·STD·882E Requirement

Perform Safety Risk

Assessment for all
12.0 Hazards

r
I

Participate in Life­
Cycle

13 .. 0 Mana ement

I,'.
I

I
I
I

ll I•

' I
I
t
I
I
I
I

! I
; I
• f

: J

l 1

Safety Case
or Safety

Assessment Report

Figure 4.0: SSS Process Chart/or Test and Deployment Phases

:LY.1. Pron·ss Suhl<.:s l\ 9.1: fktcrmi:H· th t> Soltl\'<llT f.m1ctio11ality tn /w;1l:o-.(·

Figure 4.1 depicts the process subtasks for the selection and implementation of the code-level safety

analysis. Software assessed as LOR-1 should be evaluated and assessed using the code-level safety

analysis technique.

JSSSEH, 4 .3.7.3.2

Perform Code Level

9.0
Analysis

Determine
:;: Functionality to

9.1 Analyze

, Determine Modules
, ·

9
.
2

to Analyze

Determine
-> Objectives of the

9.3 Analysis 9.4

MIL·STD·882E, Task 401

Perform Software
Test Pia nning

10.0

Analyze Code

Figure 4.1: Process Task 9.0 Perform Code Level Analysis and Subtasks

30

JS-SSA-IG Rev. B
March 2018

Software modules (or use cases) that implement the functionality identified in Process Subtask 9.1 must

be identified and tagged for analysis.

Before the safety-code level analysis begins, the SSS analyst and the assisting Subject Matter Experts

(SMEs) determine the specific objectives that are required to be fulfilled by the code-level analysis.

Objectives of the analysis should consider the operational context of the system/software to determine

values, data ranges, etc. to use in the analysis. Examples of specific objectives that may be fulfilled by

the accomplishment of a safety-code-level analysis include, but are not limited to :

• Specification to code tracing.

• Complex logic accuracy.

• Equation and algorithm accuracy.

• Fault and exemption handling.

• Forward or backward logic tracing.

• Safety-significant requirements implementation (compatible with architecture, mode ls, is

verifiable, conforms to standards, complies with requirements).

• Safety-significant data handling.

• Effects of concurrent processing.

• Accuracy and integrity of external file structures.

• Integrity of lower-level functional interfaces.

• Off-nominal inputs from functional or physical interfaces.

:-LlJ.4. Prou•ss Sulilasli C}.4: ;1nah·:te I.OH- I Solt ware

Upon identification and documentation of the objectives to be accomplished, the code level analysis

review must be scheduled and conducted . Any errors or software deficiencies discovered in the safety

code-level analysis review, to include errors identified in safety-significant code that is not specifically

part of the analysis, must be formally documented and submitted to the software development team for

defect resolution. Specific questions to be answered include, but are not limited to:

• Is the code uniquely identified as such in the module header?

• Is the intended functionality of the software coded correctly?

• Have the requirements been correctly interpreted and coded?

• Is the timing and sequencing of the functionality correct?

• Is the logic for functionality accurate and as simple as necessary?

• Have all nominal and off nominal inputs been accounted for?

• Are variables or file structures adequately protected?

• Have fault and exception handling been adequately considered and implemented?

• Does the code contain any dead or unused code, or unintended functionality?

• Is this code influenced by concurrent processing?

31

JS-SSA-J G Rev. B
March 2018

• Are safety significant software programs and functions implemented and executed on multi­

core processors?

• Are data races or shared data issues detected to prevent the corruption of safety-critical data or

variables?

• Can corrupted data lead to incorrect decisions by safety-critical software?

• Can mutual exclusion deadlocks freeze autonomous software control over safety-critical

functionality or processing?

• Are the code's interfaces witQ. other code and modules compatible?

• Are the functions and code isolated and/or partitioned from non-safety code where required?

3.10. Process Task 10.0: Perform Software Test Planning

[Ref: MIL-STD-882E Tasks 303 and 401, JSSSEH paragraph 4.4.1 and Appendix A- LOR Table]

Software test planning from a safety perspective actually begins during Process Task 2.0 when t he LOR

task table is defined, documented, and agreed upon by the SSS, software development and software

test teams. It is best practice of software test teams to test each software requirement that is

documented in the software requirements specification. At a minimum, all SRS safety requirements

must be reviewed to ensure the implementation complies with safety design requirements and mapped

to test cases.

Mll-ST0-882E, Para 8.2.2.5

Perform Software
Test Planning

10.0

Reassess LOR Test

lO. l Criteria

Determine
>- Functionality to

10.2 Test

Comply with LOR

10
_
3

Test Criteria

Mll-ST0-882E, Task 303

Monitor Safety·
Significant Testing

11.0

Assist in Wri ting
Test Cases and

10.4 Procedures

Figure 4.2: Process Task 10.0 Perform Software Test Planning and Subtasks

A portion of the software test planning for the program has been accomplished with the fulfillment of

Process Task 2.0 when defining the LOR tasks for each phase of the software development and test life

cycle. The LOR Table provides specific software test tasks for each LOR allocation. At this specific point

in time, the SSS reassesses the LOR software test tasks to ensure that they are still relevant and to verify

that the tasks have been accurately accounted for in the STP.

3. ! C.2. Pr111 t 'S!-' Su;1~asi< 1 !t.:.?.: En~on· Safct\' Funrtint!ali'.\' :s Tested

All safety-significant SRS requirements should be tested. Safety-significant requirements should be

formally documented within the SRS as accounted for in Process Task 7.0, Finalize SRHA. SSS can assist

the software test team in developing specific test cases and procedures to ensure that each SSF is

exercised and tested IAW its LOR. The testing should demonstrate that the software functions as it is

expected to function in both nominal and off-nominal operations and environments.

32

JS-SSA-IG Rev. B
March 2018

LOR test requirements, as defined in the program's LOR table, must be specifically adhered to for the

purpose of increasing the confidence that the software does not possess unnecessary or undocumented

safety risk potential. At this point in time, it is the responsibility of SSS to verify that the software testing

is conducted in accordance with the criteria as documented.

SSS should assist in the test case and procedure development for safety-significant Computer Software

Configuration Item (CSCls), Computer Software Component (CSCs) and Computer Software Unit (CSUs).

SSS should possess insight as to how the software should perform functionally and what the software

should be prohibited from doing. Specific safety test criteria for consideration when writing test cases

and test procedures can be found in the program's LOR Table.

3.11. Process Task 11.0: Monitor Safety-Significant Software Testing

It is SSS's responsibility to monitor the software testing of SSFs. Monitoring should also include notifying

and inviting the Customer to witness testing. "Monitoring" can come in the form of participation or

witnessing test events, or from the review of test results and Software Quality Assurance (SQA) sign­

offs. The test objectives and test criteria must be fulfilled by the test activity in accordance with the STP

and the LOR Table's design assurance criteria as depicted in the Process Subtasks of Figure 4.3.

MIL·STD·882E, THk 303

Monitor Safety·
Significant Test ing

11.0

l Ensure Tests
Conform to LOR

11.1 Test Criteria

Ensure Safety
Functionality is

11.2 Tested

Monitor Test
Defects and

11.3 Resolution

MIL-STD·882E, Task 301

Perform Safety Risk

12
.0 Assessment

Review Final Test

ll.
4

Results

Figure 4.3: Process Task 11.0 Monitor Safety-Related Testing and Subtasks

Specific software test criteria have been established in the LOR task table. The software test activities

must be accomplished in accordance with this established LOR criteria. LOR test criteria that are not

fulfilled must be formally documented and accounted for in any safety risk assessment that is

accomplished for the program, IAW MIL-STD-882E criteria. MIL-STD-882E, Table VI, provides

requirements for documenting potential contributions to system level risk associated with LOR shortfalls

(i.e., if LOR tasks are unspecified or incomplete).

].11.~ . Prnn·s<> S11bta~k 11.2: Ensure ~.ik:•; fm1ctio11.llity i<: ·;l'..,!Ccl

As defined in Process Subtask 11.1, SSS ensures that all safety-significant functionality is adequately

tested in accordance with LOR criterion. Specific test objectives for safety-significant functionality

should include such criteria as :

33

JS-SSA-IG Rev. B
March 2018

• Software performs the function as intended and produces the expected outcome.

• Software performs the function in its intended time allocation and within its defined sequence.

• Software does not perform undocumented, undefined, and unintended functions.

• Software performs as expected in normal or nominal environments and conditions.

• Software performs as expected in off-nominal environments and conditions.

• Software can detect faults/ failures of safety-significance.

• Software can isolate faults/failures to minimize the propagation of faults/failures to the system.

• Software can annunciate fault/failures to appropriate control entity responsible for recovery

action.

• Software can take appropriate autonomous recovery action (if there is a requirement) to

defined faults/failures.

• Functional, physical and human interfaces to ensure they are under positive control.

As the software testing commences, SSS must monitor the testing accomplished (unit testing,

integration testing, and Formal Qualification Testing (FQT)) on safety-significant elements of the

software design architecture. "Monitoring" can be in the form of reviewing test cases, procedures, and

results or witnessing software test events themselves. Any failures, anomalous conditions, causal

factors, or hazards identified in software test must be documented, and tracked to a suitable solution or

corrective action. Defect resolution, or changes made to correct software deficiencies must be

accomplished in accordance with the Software Configuration Management Plan.

:L · : .< Pron·~' S11ht<:si< 11.~: R1•\' i1·w Fi::.il 'ioftw.itT T<·~t ,-a·s.i!ls

Upon the completion of defined software test cases and procedures, the SSS must review the software

test reports. The review of the software test report should confirm:

• The software test case is accomplished in accordance with the test procedure.

• The software test results verify the successful implementation of safety requirements.

• The software test results verify the adequate mitigation of hazards and hazard causal factors .

• The software test anomalies and defects are adequately identified, documented, and rectified .

• The software defect resolutions are adequately regression tested.

• Traceability from test reports/results to hazards and mitigations is performed and evidenced.

3.12. Process Task 12.0: Perform Safety Risk Assessment

[Ref: MIL-STD-882E, Task 301, and JSSSEH paragraph 4.4.4]

As the SSS process is implemented, the conclusion of software testing will usually bring the program to a

point in time where " influencing the design" is also concluded. The remaining options for hazard

mitigation or control in our "order of precedence" are procedures and training for operators and

maintainers.

SSS must support the system safety requirements to document safety risk as depicted in Figure 4.4.

34

Mll-ST0-882E, Task 301

Perform Safety Risk

lZ.O Assessment

J,
Reassess All
Documented

12.1 Hazards

Assess Partial or
~ Verify Mitigations ~ Failure to

12.2 12.3 Mitigate

JS-SSA-IG Rev. B
March 2018

MIL-ST0-882E, Task 304

Participat e in

Life Cycle
3.0 Management

/,

Document and
7 Assess Safety Risk ·~ Communicate

12.4 12.5 Safety Risk

Figure 4.4: Process Task 12.0 Perform Safety Risk Assessment and Subtasks

3.J ~.1 l'nH c•ss Suhtask 12.1: lfrassess ail llo< unH'Bll'd Hn.ards

The safety risk assessment update after the completion of verification activities begins with a

comprehensive assessment of each documented mishap and hazard in the HTS. This assessment is a

confirmation that the hazard records contain complete and accurate information.

] 12.2 Proc(s~ ~11ht;:sl< I ~ .~· \·(·'"L\· lfazard 1•,1iCgation

As the HTS records are being assessed for hazard mitigation verification, the SSS must verify that

documented hazard mitigations have been adequately and accurately documented within the HTS

records . The evidence pertaining to the successful implementation of these safety requirements

becomes the necessary evidence for mishap and hazard mitigation.

In the process of verifying the successful implementation of safety requirements, SSS may discover that

some safety requirements were only partially implemented, deferred to later software builds, or

completely rejected. Partial or no implementation of safety requirements (including hardware,

software, and human action requirements) for a given mishap or hazard equates to safety risk. The

amount of safety risk will be dependent on other factors that must be considered, such as:

• The severity of the mishap or hazard occurrence.

• The number of other hazard mitigations implemented.

• The Boolean relationship of other mitigations with the mitigation that was not implemented.

• The ability (or inability) of the system to detect, isolate, and recover from a failure should the

failure occur.

• Body of Evidence (i.e., the results of LOR task implementation) to meet the LOR specified in MIL­

STD-882E, Table V.

Software safety requirements that are not implemented must remain in in the software requirements

and CM documentation and be prioritized for the next software build or Engineering Change Proposal

(ECP) that occurs.

35

JS-SSA-IG Rev. B
March 2018

Safety risk assessment is a comprehensive evaluation of the mishap risk that must be accepted prior to

test or operation of the system and exposing people, equipment, or the environment to known hazards.

This process subtask determines the safety risk that must be accepted IAW DoDI 5000.02.

The results and conclusions of the safety risk evaluation are formally documented within the SAR.

System Safety Risk Assessments (SSRAs), and corresponding risk acceptance must also be performed, as

applicable.

3.13. Process Task 13.0: Participate in Life-Cycle Management and Support

[Ref: MIL-STD-882E, Task 304, and JSSSEH paragraph C.11)

Modifications or changes to the system are likely to occur multiple times before the system is

decommissioned and taken out of service. Changes are either the correction of defects and deficiencies

identified by the system user or maintainer, or the functional or physical upgrade of the system to

enhance operational effectiveness and suitability. The latter can even be the result of the redefinition of

the mission that the system is to accomplish. Regardless of the reason for change, the SSS program

must be prepared for change and to accomplish the process tasks regarding change as depicted in Figure

4.5. Detailed Life-cycle Management tasks are also found in Appendix A, Life-cycle Support Phase Tasks.

Mll-STD-882E, Task 304

Participate in

life Cycle
13.0 Management

Assess all Proposed
Changes

and Impacts from
Operational Usage

13.1

Iteration Loop for

. - ---- _ ~-a_ch ~-ha.!111:.~~~-;~!1-----------·

Identifying Changes
& Operational
Impacts With

Current Hazards
3.2

Identify New
Hazards or failure
Modes Associated
with Changes or

Operational Usage
3.3

Update All Safety­
Related

13.6 Artifacts

Mitigate Hazards or
failure

13.4 Modes

Document and
;> Communicate

13. 5 Safety Risk

Figure 4.5: Process Task 13.0 Participate in Life Cycle Management and Subtasks

To actively participate in a product's life cycle management, SSS must be famil iar with, and an active

participant, in the configuration management process.

·~ 1 :~ 1. ;·on><,-; S.ilit;1.o..·l· 13. r. ·~ ~.~- l·s~· ;ill:>. :i ; (ISt'd ('h; 1 1 µ~· ... tc ;l d (I ()•1 ; ;1(i1'11<1l Impact~ (1! 1 ~!'t

Sy<;tt•111

At a minimum, System Safety should be a member of the Configuration Control Board (CCB) with

signature authority on ECP actions or upgrades. SSS must review every change request pertaining to the

system software and provide input to the System Safety representative on the CCB. Additionally, as

results from Operations of the system are obtained, any impacts of Operat ional usage must be assessed

for safety impact.

36

JS-SSA-IG Rev. B
March 2018

:i. l :·L:>. l'rnn•-;s Sl1hL1<;:f{ 13.2. ilkntif\ Cll,rngt'" .rntl Opcrntion<l! Imp;~ct..- i\~ .rnci;ilt•d 1\·ith

Curn nl ilaZ.il ,;~·

Functional or physical changes to a legacy system will likely affect the status quo of the existing hazard

analysis and must be assessed against documented hazards and accepted risks, or for the potential to

introduce new mishaps and hazards. Additionally, Operations of the system may reveal previously

unidentified safety hazards and/or causes and mitigations of existing hazards.

:·C1 :-L:{ Pnin•so; ~·nhta-:1, ! :-L:~: ldt•11til_1· N1·\\' Ha'larrh, r;:ilt:n.· f\;<:d1•'\, or Call.''t' ' . A<>•:pci;;tc'd

\\·ir.1 i'J ;,m~:c~ •• ilrl Cpt rat im;;d U~;•µ(

The system safety analysis of a change to the system or Operations of the system must determine

whether the change or Operations creates a mishap/hazard that did not exist in the legacy system, or

has an impact on an existing mishap/hazard. If this is the case, the mishap/hazard must be analyzed to

determine how it will be mitigated or controlled to an acceptable level of risk. If new mishaps/hazards

are not created by the proposed design change, there is a potential that new failure modes or causes

are created for existing hazards of the systems. These new failure modes and causes to existing hazards

must also be addressed, to include re-visiting accepted safety risks.

:LUA. ProrC'ss S11bt;1!,I\ 1:3.-I: l\1itigatt· I!azanb, F.tilun· J\l!:cit'~. or Ca11~'('!,

Mishaps and hazards, failure modes, and causal factors identified by the safety analysis for the proposed

system change(s) and Operations must be adjudicated just as any hazard identified during system

development. Mitigation is not complete until the modified software functionality has been analyzed

and tested (including regression testing) IAW its LOR.

:i.1 :·LS. Prnn._.,., ~uhta ... k I 3.S: Illa ullll'lll and fum11Hmit.1tt> S;1kt.r Hi-;k

As change requests are processed, approved, analyzed, and implemented, all safety analyses must be

accomplished for the purpose of reducing safety risk potential to the greatest extent possible (or

practical). Upon the completion of the system safety and SSS engineering tasks, a safety risk assessment

is performed and documented. New or updated safety risks must be accepted in accordance with DoDI

5000.02.

Upon the completion of system safety engineering and management tasks associated with a change, all

system and system safety related artifacts must be updated to account for the change and its ultimate

safety risk potential. For any given change action, the following engineering artifacts should be

considered candidates for update:

• SSPP (if there were any changes to management or engineering processes, tasks, budgets, or

schedules).

• Hazard Analysis (analyses accomplished to date, e.g., PHA, FHA, SSHA, SHA, O&SHA).

• In Depth Causal Analysis (e.g., FTA, Failure Mode, Effects and Criticality Analysis (FMECA)).

• SRHA (all safety requirements artifacts to include updates to the SRS, SOP, or STP as required).

37

• SAR (or possibly Safety Case to account for the safety risk assessment) .

JS-SSA-IG Rev. B
March 2018

• HTS (to account for all hazard analysis record keeping to include hazard mitigation and/or

control) .

Updating the artifacts related to safety produces the necessary evidence of hazard identification,

documentation, categorization, and mitigation for those organizations and personnel operating,

maintaining, and supporting the legacy system.

38

4.0

ARP
AWR

CCB
CORL
CMSEI
CMP
CO NO PS
COTS
csc
CSCI
CSSR
CSU

DID

DoD

ECP

FAA
FHA
FMECA
FQT
FTA

GSSR

HHA
HTS

IAW
IPT

JSSSEH

LOR

MISRA
MSSR

O&SHA
000

PHA
PHL
PM

Acronym List

Aerospace Recommended Practice
Air Worthiness Release

Configurat ion Control Board
Contract Data Requirements List
Carnegie Mellon Software Engineering Institute
Configuration Management Plan
Concept of Operations
Commercial-off-the-Shelf
Computer Software Component
Computer Software Configuration Item
Contributing Safety-Significant Requirement
Computer Software Unit

Data Item Description
Department of Defense

Engineering Change Proposal

Federal Aviation Admin istration
Functional Hazard Analysis
Failure Mode, Effects and Criticality Analys is
Formal Qualification Testing
Fault Tree Analysis

Generic Safety-Significant Requirement

Health Hazard Analysis
Hazard Tracking System (database)

In Accordance With
Integrated Product Team

DoD Joint Software Systems Safety Engineering Handbook

Level-of-Rigor

Motor Industry Software Reliability Association
Mitigating Safety-Significant Requirement

Operating and Support Hazard Analysis
Object Oriented Design

Preliminary Hazard Analysis
Preliminary Hazard List
Program Manager

JS-SSA-IG Rev. B
March 2018

39

RAC
RFP
ROI

SAR
sec
SCF
SCM
SCMP
SOP
SEMP
SHA
SME
sos
sow
SQAP
SRA
SRF
SRHA
SRS
SRVM
SSCM
SSE
SSF
SSHA
SSMP
SSPP
SSR
SSRA
SSS
SSSE
SSWG
STP
STR
SwCI
SwSSP
SwSSPP

TEMP

TRR
V&V

Risk Assessment Code

Request for Proposal
Return-On-Investment

Safety Assessment Report
Software Control Category
Safety Critical Function
Software Critica lity Matrix
Software Configuration Management Plan
Software Development Plan
System Engineering Master Plan
System Hazard Analysis
Subject Matter Expert
System-of-Systems
Statement of Work
Software Quality Assurance Plan
Safety Requirements Analysis
Safety-Related Function
System Requirements Hazard Analysis
Software Requirements Specification
Software Requirements Verification Matrix
Software Safety Criticality Matrix
System Safety Engineering
Safety-Significant Function
Sub-System Hazard Analysis
System Safety Management Plan
System Safety Program Plan
System Safety Requirement
System Safety Risk Assessment
Software System Safety
Software System Safety Engineering
System Safety Working Group
Software Test Plan
Software Trouble Report
Software Criticality Index
Software System Safety Program
Software System Safety Program Plan

Test and Evaluation Master Plan

Test Readiness Review
Verification and Validation

JS-SSA-IG Rev. B

March 2018

40

JS-SSA-IG Rev. B
March 2018

5.0 Glossary

Acceptance Criteria - Criteria that a system, software build, or component must satisfy in order to be

accepted by an Acquirer, acceptance authority, or a certification authority.

Acquirer- Stakeholder that acquires or procures a product or service from a supplier. The Acquirer may

be one of the following: buyer, customer, owner, or purchaser.

Baseline - Specification or product that has been formally reviewed and agreed upon that thereafter

serves as the basis for further development and that can be changed only through formal change

management procedures.

Causal Factors - (1) The particular and unique set of circumstances that can contribute to a hazard. (2)

The combined hazard sources and initiating mechanisms that may be the direct result of a combination

of failures, malfunctions, external events, environmental effects, errors, inadequate design, or poor

judgment.

Contributing Safety-Significant Requirements -A subcategory of the defined safety requirements of a

system. CSSRs are requirements contained within the specifications that contribute to the safety risk

potential of a system by the functionality that they will perform. CSSRs do not mitigate risk.

Control Entity - The specific entity that provides autonomous, semi-autonomous, or responsive

situational awareness command or control authority over unmanned system funct iona lity. The entity

may be human, software logic, or the logic programmed into firmware or programmable logic devices.

Developer -A private or government enterprise or organizational element engaged to provide services

or products within agreed limits specified by the Acquirer.

Failure - The inability of an item to perform its intended function.

Failure Mode - A term used to describe one (of possibly many) mechanisms that could contribute to

failure. In context to a hazard, the failure modes are descriptors of the overa ll mechanisms that could

lead to a hazards existence. Individual failure modes consist of causal factors, causal pathways, and

pathway initiation events.

Firmware - The combination of a hardware device and computer instructions and/or computer data

that resides as read-only software on the hardware device.

Function -A task, action, or activity that must be performed to achieve a desired outcome.

Generic Safety-Significant Requirements - A subcategory of the defined safety requirements of a

system. GSSRs are a product of documented system development, safety best practices, and lessons

learned from legacy programs.

Level-of-Rigor - A specification of the depth and breadth of software analysis, test, and verification

activities necessary to provide a sufficient level of confidence that a safety significant software function

will perform as required.

Mishap -An unplanned event or series of events resulting in death, injury, occupational illness, damage

to or loss of equipment or property, or damage to the environment.

41

JS-SSA-IG Rev. B
March 2018

Mishap Probability- The aggregate probability of occurrence of the individual events or hazards that

might create a specific mishap.

Mishap Risk -An expression of the impact and probability of a mishap in terms of potential mishap

severity and probability of occurrence.

Mishap Severity-An assessment of the consequences of the most reasonable credible mishap that

could be caused a specific hazard or combination of hazards.

Mitigating Safety-Significant Requirements -A subcategory of the defined safety requirements of a

system. MSSRs are normally identified during in-depth mishap and hazard causal analysis and are

derived for the purpose of mitigating or controlling failure pathways to the mishap or hazard.

Qualification Testing - Testing conducted to determine whether a system or component is suitable for

operational testing.

Regression Testing - The testing of software to confirm that functions that were previously perfo rmed

correctly continue to perform correctly after a change has been made.

Requirement - (1) A condition or capability needed by a user to solve a problem or achieve an objective.

(2) A condition or capability that must be met or possessed by a system or system component to satisfy

a contract, standard, specification, or other formally imposed document s. (3) A documented

representation of a condition or capability as in (1) or (2).

Safety Critical -A term applied to a condition, event, function, operation, process, or item of whose

mishap severity consequence is determined to be either Catastrophic or Critical by definition.

Safety Requirements Analysis -An analysis which identifies, categorizes, prioritizes, and justifies the

safety requirements to be implemented on a system to influence the design of that system from a safety

perspective.

Safety Related -A term applied to a condition, event, function, operation, process, or item of whose

mishap severity consequence is determined to be either Marginal or Negligible (less than critical) by

definition.

Safety Significant - A term applied to a condition, event, function, operation, process, or item that

possesses a mishap or hazard severity consequence by definition. That which is defined as safety­

significant can either be safety-critical or safety-related.

Validation - The determination that the requirements for a product are sufficiently correct and

complete.

Verification - The evaluation of an implementation of requirements to determine that they have been

met.

42

Appendix A

Preferred Level of Rigor Activities Table

JS-SSA-JG Rev. B
March 2018

The Level-of-Rigor (LOR) task table formally defines the software safety process tasks, software

development and test tasks, and special design criteria required to fulfill the requirements of MIL-STD-

882E, Table V. It is essential that the LOR tasks defined and contractually required on each program

make logical and economic sense from a both a safety risk and return-on-investment perspective. In

addition, it is important that the tasks defined are fully integrated into the standard practice processes

of both system safety engineering and software development and test processes. With this in mind, the

Acquirer and the Developer may tailor the preferred tasks provided in this implementation guide.

Figure A.l provides a graphical representation of the recommended method of tailoring the task table.

CftftC:lltSf "'R.t•1l "l"' t",.. rtt' M'1tn·
'~ fia .. i R•~~ · ..-... t:.

$t:t C'l) ' ~

fk~ p,., :
DP4: r,o.,. 0~ -2 •-d o•.J. d ~:.,,.. 1,.,•,.·,,.. 'Y
Oer·~• t u!t1.,..i. rrfc•..,,~ "'·..,.,rG .. ,"'t
"'n.•1t:. ~',1"t:l tt1:-.1..,lf.l•.:.ie tn~

rt~ ... rtl"lt"¢~ I~:!~!" ~IO""trt:r.c:,..

S.:t C'l) ':.J64

OP·S Ct.., 1H- ~"'t dt'I ;*" r:;· ~.,,_P J•cr"" ~~ ,..,..
(1)'0.0'tl• W.fC'ldtll,.i11'\dC~l &'Id

g ... die- rf"I:, f'"~~tt .. tl'Oldt"' 3 "t.:Mdl t <>n

'-'ai:t .ct11 . t .$~:..,,.G .; .:~: 6.C:Pf"'d • f :h"t
JWiM.tHj

(P·'f<ltl krt P'l;t:~:

Co .. uac· s,.10.,..
"'"'"

S~1·tno ir Srst•­
,..., So't""a·• ~'•h

Cc;•Wl'!lo· iVStr.
''"'Sel':v.J•~btt'\

Saft t ,_

C:t"tt·1:to· S;~\ .. 1t · •

~,, ..

C::>~t""•:to• ~rh, ·e

O•t l"'I
~tt,tl';~ 3ft'S~:.<:
Rh •"' l"'CS~C,.•cY.t

DP-6: Rtv tw.r:rt .. t-i.i~ I f"Ht-"f1:tdt1 r t: t c,·w•:te• ~Y1tf"I" '~·t .. 1:1c· Mt"'-"'•f"t
wf•ty·t f..,. r :.a"'t 1U .. H S..ftty •"'CS S,.~ ft..,..t•t C:H V

C!>"t•.::1c· S:ft. ... rt c:i .. t·•:to·"'4.,,...,-

fhr. '••:1 :t. 1t~t1r F1:1: ·1

OP-1: (••1:tt'»<;ta1l 't•,f·o-• s.feh· Co•u.a-:to·klt ·• C:0ortr•:tcd11)~v.•••
Ir f tt'"t •t~ • ..., ... ts tc l""tO~ S"" Cu f"' 5-l'tt't'

S.:i o• l'
[?tn ff1:t a~

Remove

II

R

Add

R R

Figure A.1: Preferred LOR Tailoring Method Example

II

R

R

U'V !°oQ· 1...•c:da~ c-

5-:t:•-.t:•t O•: r- ~.-t •e:b
lask not rt.qJired for

LOR.4

Developer:.Sanrb•d
Pnr:t1c•AccepUble

As o ••ct.., •.n~u-....-t :.t
(e-e ''":~:..., "'":'

"'->ui- c·cofUst•
I• ttrl~:•s IN•t"I ~ft..•A'•
'-'":1 ¢"'1 ...,
lntef'Act1•r• CfiUcal
1n lt'.ll ~ppl 1ut1on

S.!th Re:av .r..-nrt:·CC
df'S l"' T•.:n~ ~

It is recommended that tailoring consists of making changes to the columns of the table to determine

whether a specific task will be required for a given LOR level as depicted in the figure. It is also

recommended making word changes to the actual tasks themselves not be accomplished. The tasks

themselves have been formally documented and peer reviewed as "best practices" and should only be

tailored as a last resort where special circumstances warrant the change. As an example, LOR Task RP-8

states: "Coordinated Safety-significant Requirements Review for correctness and completeness." This

could be tailored to state that only Safety-Critical requirements be reviewed for correctness and

completeness. The documented rationale for this tailoring may be that the system possesses an

extraordinary number of safety-related requirements and the rapid acquisition budget and schedule

does not warrant the accomplishment of the task for lower severity level requirements.

43

JS-SSA-IG Rev. B
March 2018

As a reminder, all LOR tailoring of tasks and the rationale for LOR tailoring must be reviewed and

approved by the Acquirer to ensure that the intent of the LOR activity meets the intent of MIL-STD-882E

and any acceptance authority.

44

lege nd:
PR: Prerequisite Requirement- Required regardless of LOR or required in order to assess and determine LOR
ACQ: Task Requirement Performed by the Acquirer
R: Required for assigned LOR
IV&V: Independent verification and Val idation

AO: As directed by Customer/Contract

N/A: Not Applicable for this program or LOR

DW "·-1~~··" ••• ~ -~ loil!lit'~l~~~-t•'b-,o>(r.>~$·~.~h·~ -·~ ~
•': Primary .- ·: """.t"~~uppo!t l:7. ·~-.,'l.~~·.;.:.i!'"~.\.•:Jl1-.0 •1~ .. ~f- ·':~;.:~~~~~-";; r.·: • :3:J'ift;~iJ
- ,.~, 'b'I' ' R ·~ -.0a1. ~ •••. ~Leve O Rigor ill·""-· . .q. , . •ID
~~~on~· 11ty . ~~ _e_SP?OSI -' '.!.V :~J~~~~~.:..~~~··.'.'-..-..!&:.t.'d.: ~.~~if.>;;.( . ~·-·J 

Required System Safety Tasks to Support 

Software System Safety Per MIL-STD-882E 

ACQ-1: Document the Acquirer's plans and Acquirer PM Acquirer Software PR Acquirer System Safety 
processes to meet the requirements of the Acquirer Systems System Safety (SSS) Management Plan (SSMP) 
System Safety and Software System Safety Engineering (SE) Service Safety Review 
programs. 

Acquirer System Authorities 

Safety Engineering 
Section 3.0 Process and Tasks for Software I (SSE) 
System Safety 

ACQ-1.1: Specify Mishap Risk Matrix, SwCM, Acquirer PM I Acquirer SSS I PR I I I I I Acquirer SSMP 
Hazard Tracking System (HTS) and charter SSWG. Acquirer SE Service Safety Review 
Obtain approval from DoD Component for any 

Acquirer SSE Authorities 
tailoring of MIL·STD-882E matrices. 

ACQ-1.2: Specify the baseline LOR Task Table to I Acquirer SSS I Acquirer Team I PR I I I I I Acquire SSMP 
be used and/or tailored for the program 

ACQ-2: Develop safety input to Request for I Acquirer SSE I Acquirer SE I PR I I I I I RFP, SOW, contract 
Proposal (RFP), Statement of Work (SOW) and Acquirer SSS 
other contractual documentation (tasks, 
analyses, CDRls, etc.) 

Section 3.1.6 Provide Inputs to the RFP and SOW 

ACQ-3: Define Acquirer specification safety Acquirer SSE I Acquirer SE I PR I I I I I Govt. System Specification, COD 
requirements Acquirer SSS 

ACQ-4: Ensure safety is a member of the Acquirer SSE I Acquirer CM I PR I I I I I CM Plan and Charters 
configuration control process (voting member of Acqulrer SSS 
Acquirer chai red boards) 

ACQ-S: Initiate hazard analyses I Acquirer SSE J Acquirer Team I AD I I I I J Acquirer safety artifacts 

Acquirer SSS 

SSE-1: Document the Developer plans and Developer System Developer Program PR System Safety Program Plan 
processes to meet the requirements of the Safety Manager Manager (SSPP) and Software System 

System Safety and Software System Safety Developer Software Developer Hardware Safety Program Plan (SwSSPP). 

programs. Safety and Software Design SOW, CDRL 

Engineering Acquirer Approved SSPP/SwSSPP 

Developer Software 

45 



Legend: 
PR: Prerequisite Requirement- Required regardless of LOR or required in order to assess and determine LOR 
ACQ: Task Requirement Performed by the Acquirer 
R: Required for assigned LOR 
IV&V: Independent Verification and Validation 

~ 

1,;L tlfi_, .i; 

Section 3.0 Process and Process Tasks for 

I 
I Design Architect 

Software System Safety Developer 
MIL-STD-882E, Task 102 Configuration 

Management 

SSE-1.1: Define the safet y terms (and the Acquirer System Developer System PR 
definitions) to be used on the program, to Safety Manager Safety 
include deviations from MIL-STD-882E. Developer System Acquirer SSWG Review 

Safety Manager and Approval 

Section 3.1, Prepare the SSPP; Subsections 3.1.1 - I Developer Software 
3.1.S Design Architect 

[Best Practice] 

SSE-1.2: Detail within t he SSPP/ SwSSPP, how Developer Software I Acquirer SSWG Review I PR 
the SwSS tasks will be accomplished within the Safety and Approval 
specific software development life-cycle for the Developer Software 
project. Development 
Section 3.2.3 Integrate Software Safety 
Engineering Criteria 

MIL-STD-882E, Task 102 

SSE-1.3: Develop safety entry/exit criteria for Developer Software Acquirer SSWG Review PR 
each program phase of the software Safety and Approval 
development life cycle to include concept Developer Software 
refinement, requirements, preliminary and Development and 
detailed design, coding, Test Verification and Test 
Validation (V&V), software release and support). 

Configuration Mgmt 
[Best Practice] 

SSE-1.4: Document the Software Control Developer Software Acquirer SSWG Review PR 
Category (SCC) Definitions to be used on the Safety and Approval 
program Developer Software 
Section 3.2 Prepare the SSPP Development and 

Test 

Developer Software 

(MIL-STD-882E, Table IV) 
, Design Architect 

SSE-1.5: Document the Software Criticality I Acquirer System I Acquirer SSWG Review I PR 
Matrix (SCM) for the program Safety Manager and Approval 

4 3 2 1 

Documented Program-Specific 
Terms and Definitions. MIL-STD-
882E definitions and terms are 
required unless approved by 
appropriate authorities 

Acquirer Approved SSPP 

I I I I 
I SOW, CORL. SSPP/SwSSPP 

Acquirer Approved SSPP/SwSSPP 

Input to SwSSPP 

Input to Software Development 
Plan (SOP) 

Input to Software Test Plan (STP) 

Input to CMP 

Input to SwQAP 

SSWG Minutes 

Defined Software Control 
Category Definitions 

SwSSPP 

I I I I I SSMP 

Program Software Criticality 

46 



Legend: 

PR: Prerequisite Requirement- Required regardless of LOR or required in order to assess and determine LOR 
ACQ: Task Requirement Performed by the Acquirer 
R: Required for assigned LOR 
IV&V: Independent Verificat ion and Val idation 

,., .,,.,...,. ... £ ... P'"OSl!l!JL&i-. ~\11:11&!"'1 

Section 3.2 Prepare the SSPP 

[MIL-STD-882E, Table VJ 

SSE-1.6: Develop (or update) Level of Rigor (LOR) 
task table for the program to include tasks and 
work products for each LOR software 
development phase 

Section 3.2.4 Prepare Level-of-Rigor Table 

[MIL-STD-882E, Table V] 

SSE-2: Support the System Safety W orking 
Group (SSWG) 

Section 3.0 Process and Tasks for Software 
System Safety 

SSE-3: Set-up a Hazard Tracking System (HTS) for 
the program 

Section 3.2.1 Obtain Inputs from the SSMP 

Also, Statement of W ork tasks 

[MIL-STD-882E, Paragraph 4.3.2] 

SSE-4: Perform a Preliminary Hazard Analysis 

(PHA) to ident ify the safety mishaps and hazards 

and safety m it igation requirements 

Section 3.3 Preliminary Hazard Analysis (PHA) 

[MIL-STD-882E, Task 202 J 

Developer Software 
Safety 

Developer Software 
Development and 
Test 

Developer Software 
Design Architect 

Developer Software 
Safety 

Developer Softw are 
Development and 
Test 

Developer Software 
Design Architect 

Acquirer System 
Safety Manager 

Developer System 
Safety, Software 
Design Architect, 
Software Safety, 
Software 

Development & Test 

Developer System 
Safety 

Acquirer System 
Safety 

Developer System 
Safety 

Acquirer SSWG Review 
and Approval 

Acquirer SSWG 

Acquirer SSWG Review 
and Approval 

Acquirer SSWG Review 
and Approval 

PR 

PR 

PR, AD 

PR 

Matrix 

SwSSPP 

SSWG Minutes 

LOR Table 

SwSSPP 

SSWG Minutes 

SSMP, SSPP. SSWG Charter and 
Proceedings 

Hazard Tracking Database 

SSWG Minutes 

List of System Level Mishaps 

List of Hazards and Hazard Failure 
Modes 

Preliminary Hazard Analysis (PHA) 

SSWG M inutes 

47 



legend: 
PR: Prerequisite Requirement- Required regardless of LOR or required in order to assess and determine LOR 
ACQ: Task Requirement Performed by the Acquirer 
R: Required for assigned LOR 
IV&V: Independent Verification and Validation 
~ C ... ·i _F. ·,_:. IQ\fW'E..W'!': 

SSE-4.1: Enter each hazard identified int o the 
HTS 

Section 3.3.1 Identify Hazards Pertaining to the 
Baseline System to Include the Preliminary 
System/Software Architecture 

[Mll-STD·882E, Paragraph 4.3.2] 

SSE-4.2: Assign the severity and probability of 
occurrence to each hazard identified and 
calculate the initial Risk Assessment Code (RAC) 
based on the best available data documented, 
including provisions, alternatives, and mitigation 
measures to eliminate hazards or reduce 
associated risk 

Section 3.3.5 Categorize Hazards with 

[Mll·STD-882E, Para 4.3.3] 

SSE-5: Perform a Functional Hazard Analysis 
(FHA) to identify the safety-significant funct ions 

Section 3.4 FHA 

[Mll·STD-882E, Task 208] 

SSE-6: Perform a System Requirements Hazard 
Analysis (SRHA) 

Section 3.5 Initiate Safety Requirements Hazard 
Analysis (SRHA), Section 3. 7 Finalize Safety 
Requirements Hazard Analysis 

[MIL-STD·882E, Task 203) 

SSE-7: Perform a System Hazard Analysis (SHA) 
and accomplish an in-depth causal, interface, and 

failure mode analysis of the identified hazards to 

identify specific hardware, software, and human­

related causes and the safety mitigating 
requirements to eliminate or control t hem. 

Section 3.6 Perform System and Subsystem 
Hazard Analyses (MIL-STD-882E, Task 205] 

Developer System 
Safety 

Developer System 
Safety 

Developer System 
Safety 

Developer System 
Safety 

Developer System 
Safety 

Acquirer SSWG Review 
and Approval 

Acquirer SSWG Review 
and Approval 

Acquirer SSWG Review 
and Approval 

Acquirer SSWG Review 
and Approval 

Developer Software 
Safety 

W::.:!~ 

PR 

PR 

PR 

PR,AD 

PR 

4 3 2 1 

r.'t.<'!1"" r.' :ft;'1!\, r..Ji\ l fti.-v.J:, ... 
~ 

Individual Hazard Records of the 
HTS 

SSWG Minutes 

RAC Assignment for each Hazard 
Record 

SSWG Minutes 

FHA 

List of Safety-Significant Functions 

Functional Flow to Subsystems 
and Software Items. 

LOR Assignment to Safet y­
Significant Software Functions 

SSWG M inutes 

SOW, CORL, Safety Requirements 
Analysis (SRA) 

SSWG Minutes 

System Hazard Analysis 

48 



AD: As directed by Customer/Contract 
N/A: Not Applicable for this program or LOR 
~ ,' ... J,. ... • ~ ~'f";,'C ... .. ~ ~ .. -~ • 

SSE-8: Perform Sub-System Hazard Analysis and I Developer System I Developer Software I PR, AD I I I I I Subsystem Hazard Analysis for 
accomplish an in-depth causal, interface, and Safety Safety individual subsystems 
failure mode analysis of the identified hazards to 
identify specific hardware, software, and human-
related causes and the safety mitigating 
requirements to eliminate or control them. 

Section 3.6 Perform System and Subsystem 
Hazard Analyses 

(MIL-STD-882E, Task 204] 

SSE-9: Perform initial Fault Tree Analysis I Developer System I Developer Software I PR, AD I I I I I Fault Tree Analysis on prioritized 
(FTA)/Event Tree/Logic Diagram on prioritized Safety Safety (by SSWG) mishaps or hazards 
hazards 

Section 3. 6 Perform System and Subsystem 
Hazard Analyses 

(Best Practice] 

SSE-10: Per form a System-of-System Hazard I Developer(s) System I Developer(s) Software I PR,AD I I I I I Sos Hazard Analysis 
Analysis (SoS) to identify unique SoS hazards Safety Safety 

[MIL-STD-882E, Task 209] 

SSE-11: Perform an Operating and Support I Developer System 
Hazard Analysis to identify hazards from the long Safety 

I Developer Software 
Safety I PR,AD I I I I I Operating and Support Hazard 

Analysis (O&SHA) 
term operation, maintenance, and support of t he 
application, and to identify mitigating 
requirements 

[MIL-STD-882E, Task 206) 

SSE-12: Review of all Software Trouble Reports Developer Software Developer Software I PR I ( I I I STR Review Results 
for safety applicability to safety-significant Safety Development and Test 
functions and mishaps/hazards (STR) Developer Software NOTE: Refer to subsequent Life-
Section 3.12.3 Monitor Test Defects and Design Architect Cycle (LC) Support Tasks required 
Corrective Actions, 3.12.4 Review Final Software to support sustainment after 
Test Results design is put under Configuration 
(MIL-STD-882E, Task 304] Control 

SSE-13: Produce Safety Case or Safety Developer System Developer Software PR,AD Safety Case 
Assessment Report as direct ed by the customer Safety Safety Safety Assessment Report 
(SAR). Ensure the SAR captures all of the 

SSWG Minutes relevant SSS elements applicable to t he system 
assessed 

49 



legend: 
PR: Prerequisite Requirement- Required regardless of LOR or required in order to assess and determine LOR 

ACQ: Task Requirement Performed by the Acquirer 
R: Required for assigned LOR 
IV&V: Independent Verification and Validat ion .. , . .. . 

I ·ilEIHm-
I 

Section 3.0 Process and Process Tasks for 
Software System Safety 

[MIL-STD-882E, Task 301] 

SSE-14: Maint ain records of compliance with the I Developer Software 
tailored program safety requirements. Safety 

Software Quality 
Assurance 

(MIL-STD-882E, Tasks 102, and 104] I Developer Software 
Development & Test 

REQUIREMENTS PHASE (RP) TASKS 

RP-1: Review generic software safety Developer System 
requirements from other standards, including Safety 
coding standards or industry best practice and Developer Software 
identify the software safety requirements that Safety 
are deemed appropriat e for the 
system/software. Tag and t rack t hese Software 
Safety Requirements in the Requirements 
Traceability Management (RTM) tool 

Section 3.5.3 Identify and Tag Generic Safety 
Significant Requirements 

[MIL-STD-882E, Task 203) 

RP-2: Review System Requirements Specification Developer System 
(SRS), and identify t he functional requirements Safety 
that contribute to t he hazards. Tag and track Developer Software 
these safety-significant Requirements in the Safety 
Requirements Traceability Management (RTM) 
tool 

Section 3.S.l Review System and Functional 
Specifications 

Section 3.5.2 Identify and Tag Contributing Safety 

Significant Requirements (CSSR) 

[MIL-STD-882E, Task 203) 

RP-3: From the FHA and the PHA Analyses, Developer System 
derive high-level safety requirements to m it igate 

I I ~~1'.i-:'dtlik I 

Acquirer SSWG Review PR, AD 
and Approval 

Acquirer Review and 
Approval 

I I I 

4 I 3 I 2 I 1 

All System Safety and Software 
Safety Engineering Artifact s 

SSWG Minutes 

Software Quality Assurance (SQA) 
Audits and Results 

R R R R List of Generic Safety-significant 

Requirements documented in 
RTM tool 

SSWG Minutes 

R 

I 
R 

I 
R 

I 
R I List of Contributing Safety-

significant Requirements 
documented in the RTM Tool 

R R R R List of Derived Safety-significant 

50 



legend: 
PR: Prerequisite Requirement- Required regardless of LOR or required in order to assess and determine LOR 
ACQ: Task Requirement Performed by the Acquirer 
R: Required for assigned LOR 

IV&V: Independent Verification and Validation 
... --.... , ..... .... '··..:a.:. •• •· ... • .,:·#~ .. 

~11.uJ 

identified hazards and failure modes. Tag and Safety 

track these mitigating safety-significant Developer Software 
Requirements in the Requirements Traceability Safety 
Management (RTM) tool. 

Section 3.5.4 Identify and Tag Mitigating Safety 

Significant Requirements (MSSR) 

[Mll·STD·882E, Task 202, 203, and 208) 

RP-4: Assign the Software Criticality and LOR to I Developer Software I Developer Software 

I each Safety-significant Requirement based on Safety Requirements 
the software control category and the highest 
severity of the associated hazard (functional 
contribution) of the safety-significant function 

the requirements are intending t o implement. 

Section 3.4.8.4 Assign the Critical ity LOR to the 
Safety Significant Function 

[Ml l-STD-882E, Task 203) 

RP-5: Create traceability matrix from safety- I Developer System I Acquirer Review and 

I 
significant requirements (generic, contributing or Safety Approval 

mitigating requirements) to identified hazards Developer Software 

Safety 
I 

Section 3.5 Initiate Safety Requirements Hazard 
Analysis (SRHA) 

Section 3.8 Perform Safety Requirements 
Traceability 

(Mll-STD-882E, Task 203) 

RP-6: Ensure that SwSS requirements (generic, I Developer System I Developer Software 

I contributing, or mitigating) are flowed down and Safety Safety 
traceable to the lower level SRS safety 

requirements, as they are developed. 

Section 3. 5 Initiate Safety Requirements Hazard 
Analysis (SRHA) 

(Summary Task for RP-1 to RP-3) 

4 3 2 1 
(high-level) Requirements 

I 
R 

I 
R 

I 
R 

I 
R I LOR Assignments to requirement s 

based upon previously defined 
software function SwCI. 

I 
R 

I 
R 

I 
R 

I 
R I Requirements-to-Hazards 

Traceability Artifact 

SSWG Minutes 

I R I R I R I R I Requirements-to-Specifications 
Traceability Artifacts 

51 



legend: 
PR: Prerequisite Requirement- Required regardless of LOR or required in order to assess and determine LOR 
ACQ: Task Requirement Performed by the Acquirer 
R: Required for assigned LOR AO: As directed by Customer/Contract 
IV&V: Independent Verification and Validation N/A: Not Applicable for this program or LOR 1· ·?;m M _(» 

RP-7: Derive requirements to insure that safety- Developer Software Developer Software 

I significant interfaces are validated and controlled Requirements Safety 
at all times Developer Software 
[Best Practice] Design Architect 

RP-8: Coordinated Safety-significant Developer Software Developer Software I 
Requirements Review for correctness and Requirements Safety 
completeness Developer Software 
[Best Practice] Design Architect 

RP-9: Derive requirements for a fault tolerant Developer Software Developer Software 

I design and tag as Derived Safety-significant Requirements Safety 
Requirements Developer Software 

Design Architect 

[Best Practice] 

RP-10: Independent review of all Contributing, Someone Other Than Independent Software 

I 
IV&V, 

Generic, and Mitigating Software Safety the Developer Safety AD 
Requirements 

[Best Practice] 

RP-11: Define the verification method I Developer Software I Developer Software 
(inspection, demonstration, analysis, or test) for Requirements Safety 
each Safety-Significant Requirement Developer Software 

I I 
Design Architect 

[Best Practice] 

DESIGN PHASE (DP) TASKS 

OP-1: Update all analyses (PHA, FHA, SRHA, Developer System Developer Software 

I 
PR,AD 

Subsystem Hazard Analysis (SSHA), SHA, and FT A) Safety Safety 
for depth and fidelity based on the maturing Acquirer Review and 
design concepts in the design phase of the Approval 
program 

Section 3.3-3.7 

(MIL-STD-882E, Tasks 202, 203, 204, 205, 208] 

OP- 2: From DP-1, identify and add to the SRS Contactor System Developer Software 
generic safety and coding standard requirements 

I I R I R I R I Functional and Physical Design 
Interface Analysis 

I I R I R I R I Safety Requirements Review 

I I R I R I R I Derived Fault Tolerant 
Requirements 

I I I I 
I Independent Safety Requirements 

Review 

R R R R Requirements Traceability Matrix 

(i ncludes verification method) 

Software Development and Test 
Artifacts 

I I I I 
I Updated safety engineering 

analysis artifacts 

Acquirer Approval 

R R R List of Safety-Specific 
Requirements Considered to be 

52 



Legend: 
PR: Prerequisite Requirement- Required regardless of LOR or required in order to assess and determine LOR 
ACQ: Task Requirement Performed by the Acquirer 
R: Required for assigned LOR AD: As directed by Customer/Contract 
IV&V: Independent Verification and Validation 
Wiii~W-•iE 

N/A: Not Applicable for this program or LOR 
J.-•rt .. ~ i ... ~~~~~~ ... ~ .. 

for fault detection, isolation, annunciation, and Safety Safety 
tolerance, error logging, and safe state Developer Hardware 
transitions, and tag t hese as Mitigating Safety- and Software Design 
significant Requirements Engineering 

Developer Software 
Development and Test 

Section 3.5.3 Developer Software 

[Best Practice] Design Architect 

DP-3: From DP-1 and DP-2, identify and add to Contactor System Developer Software 
the SRS mitigating software requirements for Safety Safety 
hazards causal factors, and tag these as Developer Software 
Mitigating Software Safety Requirements or Design Architect 
defects against existing high-level safety-

significant Requirements. 

Section 3.5.4 

[Best Practice] 

DP-4: From DP-2 and DP-3, document the newly Contactor System Developer Software 

I derived safety-significant requirements in the Safety Safety 
RTM tool, and track, and trace these Developer Software 
requirements to design implementation. Design Architect 
Section 3.5.8 

[Best Practice] 

DP-5: Review the design for compliance with the Acquirer System and Developer Software 

I corporate safety design standards and Software Safety Design Architect 
guidelines, and Acquirer directed best practices Developer System Acquirer SSWG Review 
(i.e., STANAG 4404, Appendix E of the JSSSEH, and Software Safety and Approval 
etc.) 

[Directed Best Practice] 

DP-6: Review of the user interface design for I Developer System Developer Hardware I safety-significant issues Safety and Software Design 

Developer Software Engineering 

[Best Practice] I Safety Developer Human 
Factors 

DP-7: Create traceability from all safety- Developer Software Developer Software 

significant requirements to the system and 

4 3 2 .1 
- -

Safety Best Practice 

R R R R Derived Safety Requirements 

OR 

Defects against existing Safety 
Requirements 

I 
R I R 

I 
R 

I 
R I RTM Tool Update 

Software Design Artifacts 

I I R I R I R I As directed Assessment of 
Compliance Artifact 

I I I R I R I Assessment of User Interfaces 
with Software Functionality 

R R R R Safety Requirements-to-design 

53 



Legend: 
PR: Prerequisite Requirement- Required regardless of LOR or required in order to assess and determine LOR 
ACQ: Task Requirement Performed by the Acquirer 
R: Required for assigned LOR 
IV&V: Independent Verification and Validation 
!Jfff!IEJ 

AD: As directed by Customer/Contract 
N/A: Not Applicable for this program or LOR -

software architecture I Design Architect I Safety 
l~Utl , 

Section 3.5 

Section 3.8 

[Best Practice] 

DP-8: Functionally partition all implementations Developer Software Developer Software 
of high LOR requirements from lower LOR Design Architect Safety 
requirements in t he design 

[Best Practice] 

DP-9: Assess design's stress tolerant (i.e., Developer Software Developer Software I I 
memory, processing through-put, timing, etc.). Design Architect Safety 
Make appropriate recommendations to update Developer Software 
requirements for stress tolerant design. Requirements and 
(Best Practice) Design 

DP-10: Perform Design Interface Analysis to Developer Software Developer Software 
evaluate internal and external interfaces of Design Architect Safety 
safety-crit ical units to ensure functional and 
physical compatibility across the interface. 
[Best Practice) 

DP-11: Analyze all safety functional threads to Developer Software Developer Software I I 
ensure that all paths lead to their desired Design Architect Safety 

outcomes and that there is no dead/unused 
code, unused/ undesired entry/exit points 
into/out of the soft ware thread 

[Best Practice] 

DP-12: Verify that every variable and functional Developer Software Developer Software 

I I statement in safety-critical modules of code have Design Architect Safety 

a predefined behavior that fulfill the criteria of 
the functional objective 

[Best Practice] 

DP-13: Independent Safety Review of I Someone Other Than I Independent Software IV&V, 
Requirements-to-Design for Safety Coverage System Safety Team Safety AD 

Independent Software 

[Best Practice] I 1 Design 

IMPLEMENTATION (CODING) PHASE {IP) 

4 I 3 
I 

2 I 1 I Traceabil ity 

R R Functionally Partitioned Design in 
Design Documentation Artifacts 

I I R I R I Stress Tolerant Design 

R R Verification that t he design 
controls the functional and 
physical interfaces with safety-
significant funct ionality 

I I I R I Safety (functional) Th read Analysis 

I I I 
R I Safety-specific Behavioral Review 

Results for Safety-Critical Modules 
of Code 

Independent Safety Review of 
Requirements-to-Design Coverage 
Artifact 

54 



legend: 
PR: Prerequisite Requirement- Required regardless of LOR or required in order to assess and determine LOR 

ACQ: Task Requirement Performed by the Acquirer 
R: Required for assigned LOR AD: As directed by Customer/Contract 

IV&V: Independent Verification and Validation N/A: Not Applicable for this program or LOR 
l""""'t'llll MW MCMtM 

·~ 

TASKS 

IP-1: Update existing FTA/Event Tree/Logic Developer System Developer Software R,AD 
Diagram on prioritized hazards Safety Safety 

[MIL·STD-882E] 

IP-2: Update all Hazard Analyses to include the Developer System Developer Software PR, AD 
in-depth causal analysis that reflects the Safety Safety 
mature(ing) design 

Section 3.3 - 3. 7 

[MIL·STD·882E, Tasks 204, 205] 

IP-3: Update Safety Case or SAR as required by Developer System Developer Software PR, AD 
Customer Safety Safety 

[MIL·STD-882E, Task 301] 

tP-4: Participate in Test Readiness Reviews Developer System Developer Software I 
(Best Practice] Safety Safety 

IP-5: Mark safety-significant code header with Developer Software Developer Software 

I the appropriate safety-criticality or LOR Developer Safety 
assignment 

[Best Practice] 

tP-6: Perform reviews of code for compliance Developer Software Developer Software PR 
with safety-significant coding standards and Developer Safety 
guidelines (e.g .. Motor Industry Software Developer Software 
Reliability Association (MISRA)) Quality Assurance (QA) 

(Best Practice] 

IP-7: Perform detailed code walkthroughs and I Developer Software I Developer Software I 
analysis of safety-critical code Design Architect Safety 

Developer Software 

Section 3.9 Perform Code Level Safety Analysis 1 Developer 

(Best Practice] 

IP-8: Create traceability from code to safety- Developer Software Developer Software 
significant design requirements Design Architect Safety 

Developer Software 

4 3 2 1 

Updated FTA/Event Tree/Logic 
Diagram on Prior itized Hazards 

Updated Hazard Analysis 

Updated Safety Case or Safety 

Assessment Report 

I R I R I R I R I Test Readiness Review Artifacts 

I R I R I R I R I Code Headers Reflect Correct 
Safety Significance 

Artifacts Demonstrating 

Compliance with Best Pract ices 
for Safety-Critical Code 
Development 

I I I I R I Code Level Review Results 

R R R Requirements-to-Code 
Traceability 

55 



l egend: 
PR: Prerequisite Requirement- Required regardless of LOR or required in order to assess and determine LOR 

ACQ: Task Requirement Performed by the Acquirer 
R: Required for assigned LOR 
IV&V: Independent Veri fication and Validation .. ,._ ... ,_..,w_ 

I I ~~M~ 1 
Section 3.8 Developer 

[Best Practice) 

IP-9: Participate in acceptance review of safety- Developer Software Developer Software 
significant code Safety Developer and 

[Best Practice] Software Test 

IP-10: Independent, Safety Review of Safety- Independent Design Independent Software IV&V, 
Significant Code Safety AD 
Section 3.9 Perform Code Level Safety Analysis 

[MIL-STD-882E) 

IP-11: Perform detailed code inspections for Software Softwa re Test 

fault contributions of Safety-Significant Code Development Team Software Safety 

Section 3.9.4 Analyze LOR-1 Software 

[Best Practice) 

IP-12: Review unit test plan to ensure that it Developer Software 
defines the requirements for testing units of Safety 
safety-significant code 

Section 3.10.2 Ensure Safety Functionality is 
Tested 

[Best Practice) 

IP-13: Execute unit tests Developer Software I I I (Best Practice) Developer 

IP-14: Unit test results review Developer Software I Developer Software I I 
(Best Practice] Developer Safety 

IP-15: Review unit test results and verify that the Developer Software I Developer Software I I unit tests provide the required unit test coverage Test Safety 

and were executed in compliance with the unit 

test plan 

[Best Practice) 

TEST PHASE (TP) TASKS 

4 I 3 I 2 I 1 

R R R Acceptance Review of Safety 
significant Software 

Safety Code-Level Review 

R Safety Code-Level Analysis for 

Fault Management 

R R R R Assessment of Unit Test Plan for 
Requirements Definition 

R I R I R I R I Documented results of Unit Test 
Execution 

R I R I R I R I Assessment of Unit Test Results 

R I R I R I R I Documented results of Unit Test 
Review 

56 



Legend: 
PR: Prerequisite Requirement- Required regardless of LOR or required in order to assess and determine LOR 

ACQ: Task Requirement Performed by the Acquirer 
R: Required for assigned LOR AD: As directed by Customer/Contract 
IV&V: Independent Verification and Validation N/A: Not Applicable for this program or LOR 

"""[-Jt--&J ... --.- di.U.4J. 

.;tfutl@ 

TP-1: Finalize the System Hazard Analysis (SHA) Developer System Developer Software 

Section 3.6 Safety Safety 

[MIL-STD-882E, Task 204, 205, 206, 208) 

TP-2: Mark safety-significant test cases with the Developer Software I Developer Software 

I appropriate LOR Safety Test 

[Best Practice] 

TP-3: Perform a safety review of each test case Developer Software I I 
3.10 Perform Software Test Planning Safety 

[Best Practice) 

TP-4: Review all requirements traceability Developer System Developer Software I matrices for coverage and completeness Safety Safety 

[Best Practice] 

TP-5: Develop software test case procedures to Developer Software Developer Software 
demonstrate software structure (statement Test Design Architect 
coverage) is achieved Developer Software 

Safety 

I I 
[Best Practice] 

TP-6: Develop software test case procedures to Software Test Software Safety 
demonstrate software structure Software Design 
(condition/decision coverage(C/DC)) is achieved 

(Best Practice) 

TP-7: Develop software test case procedures to Developer Software Developer Software 
demonstrate software structure (modified Test Design Architect 
condition/decision coverage (MC/DC)) is Developer Software 
achieved. Safety 

[Best Practice) 

TP-8: Perform a software structural coverage Developer Software Developer Software 
analysis to demonstrate that the appropriate Test Design Archit ect 
level of software structural coverage, including Developer Software 
data coupling and control coupling, has been Safety 

4 3 2 1 

R R R R Final Hazard Analysis Art ifact s 

I 
R 

I 
R 

I 
R 

I 
R I Evidence within the Safety-

Specific Software Test Cases 

I R I R I R I R I Safety Review Results 

I I R I R I R I Requirements Traceability Review 
Results 

R R R Evidence within the Software Test 
Plan 

Documented Code Structural 
Coverage evidence 

R R Safety-Specific Software Test 
Cases 

Documented Code Structural 
Coverage evidence 

R Safety-Specific Software Test 
Cases 

Documented Code Structural 
Coverage evidence 

R R Safety-Specific Software Test 
Cases 

Documented Code Structural 

Coverage evidence 

57 



Legend: 
PR: Prerequisite Requirement- Required regardless of LOR or required in order to assess and determine LOR 
ACQ: Task Requirement Performed by the Acquirer 
R: Required for assigned LOR AD: As directed by Customer/Contract 

IV&V: Independent Verification and Validation N/ A: Not Applicable for this program or LOR 

t W!~ 

achieved. 

[Best Practice] 

TP-9 : Develop software test cases to Developer Software Developer Software 
demonstrate that the software satisfies its Test Design Architect 
requirements and those anomalous conditions or Developer Software 
software errors cannot lead to a hazardous Safety 
condit ion as identified by the Hazard Analyses 
from the System Safety process. 

[Best Practice] 

TP-10: Each software requirement identified as Developer Software Developer Software I safety significant in the System Safety Hazard Test Design Architect 
Analysis process shall be traced t o a test case and Developer Software 
each test case shall trace back to a software Safety 
requirement. 

[Best Practice] 

TP-11: Develop software test cases to Developer Software Developer Software I demonstrate the ability of the software to Test Safety 
correctly respond to off-nominal, robustness, 
and failure mode conditions as identified by the 
system Safety Hazard Analysis process. Off 
Nominal and robustness conditions that must be 
considered are: abnormal, out-of-bounds, and 
invalid variable input values including zero, zero 
crossing and approaching zero from either 

direction or similar values of trig functions; 
proper state transitions and possible disallowed 
state or mode transitions; system initialization 
under abnormal and failure conditions; errors in 
input values or counters associated w ith time or 
rate f unctions and algorithms; failure modes of 
input data str ings and messages; out of range 
loop counters and other loop failure condit ions; 

exception handling correctness; fault and error 

handling correctness 

(Best Practice] 

TP-12: Perform a software test coverage analysis Developer Software Developer Software 

to demonstrate that test case procedures meet Test Safety 

R R R Safety-Specific Software Test 

Cases 

I I I R I R I Safety-Specific Software Test 
cases 

I I I R I R I Safety-Specific Software Test 
Cases 

R R Safety Requirements-to-Test 
Cases Trace 

58 



Legend: 
PR: Prerequisite Requirement- Required regardless of LOR or required in order to assess and determine LOR 

ACQ: Task Requirement Performed by the Acquirer 
R: Required for assigned LOR AD: As directed by Customer/Contract 
IV&V: Independent Verification and Validation N/A: Not Applicable for this program or LOR 

Z!WWWC!1' 

the requirements based test coverage criteria: a 
test case exist for each software requirement; 
test cases satisfy the criteria for normal; 
robustness, and failure mode testing; all test 
procedures used to satisfy structural coverage 
are traced to requirements; and that 
requirements or structural coverage deficiencies 
are resolved by identification or new 
requirements or new test cases. 

[Best Practice) 

TP-13: Create a safety-significant test report I Developer Software I Developer Software I 
documenting the safety-significant formal testing Test Safety 
compliance and execution results 

[Best Practice) 

TP-14: Review safety-significant test results and Developer Software Developer Software I verify that the safety-significant test cases Test Safety 
provide the required test coverage and were Developer Software 
executed in compliance with the formal test Quality 
plans. 

[Best Practice] 

TP-15: Track safety verification failures and Developer Software I Developer Software I 
participate in test anomaly resolution Design Safety 

Section 3.11.3 Process Subtask 11.3: Monitor Developer Software 
Test Defects and Corrective Actions Test 

[Best Practice) 

TP-16: Plan, perform, and review functional and I Developer Software I Developer Software I Failure Modes and Effects Test (FMET) test plans Design Safety 
and procedures. Developer Software 

Test 
I 

Section 3.11.4 Review Final Software Test Results 

[Best Practice) 

TP-17: Add test cases to the Regression Test Plan Developer Software I Developer Software I to support 100% regression testing for safety- Test Design 
significant functions that have been updated. Developer Software 

Safety 
I I 

[Best Practice] 

I R I R I R I R I Safety-Critical Test Report 

I R I R I R I R I Verification of Test Case 
Implementation 

I R I R I R I R I Attendance Log 

I R I R I R I R I Regression Test Plans and 
Procedures 

I R I R I R I R I Regression Test Plans and 
Procedures 

59 



legend: 
PR: Prerequisite Requirement- Required regardless of LOR or required in order to assess and determine LOR 
ACQ: Task Requirement Performed by the Acquirer 
R: Required for assigned LOR 
IV&V: Independent Verification and Validat ion 
,£Wl'W.QA4 

AD: As directed by Customer/Contract 
N/A: Not Applicable for this program or LOR 

&a -aw:t:~:!ZYt·rm 

fuill.ii.bm 

TP-18: Perform 100% regression testing for any Developer Software Developer Software 
safety-significant functions that have been Test Safety 
updated 

Regression testing must include testing of non-
partitioned non-safety-significant software at t he 
same LOR as the safety-significant software. 

[Best Practice] 

TP-19: Perform hazard risk assessments based Developer System Developer Software I 
upon results of verification activities. Safety Safety 

Section 3.12 Perform Safety Risk Assessment 

(MIL-STD-882E, Task 301] 

TP-20: Gain accreditation and validation of I Developer Software I I 
models and simulations that are used to support Engineering 
software system safety verification in accordance 
with DoDI 5000.61, DoD Modeling and 
Simulation (M&S) Verification, Validation, and 
Accreditation (W&A). 

[Best Practice] 

TP-21: Validate models and simulations against Developer Software I I 
actual hardware and data. Engineering 

(Best Practice] 

TP-22: SwSS personnel shall support the system Developer and I I safety risk assessment process. Acquirer SSWG 

Section 3.12 Perform Safety Risk Assessment 

[Best Practice] 

LIFE CYCLE (LC) SUPPORT PHASE TASKS 
--

LC-1: Review of all Engineering Change Proposals I Developer System I Developer Software I PR 
for safety applicability to safety-significant Safety Team Safety 
functions and mishaps/hazards (ECP) 

Section 3.13 Participate In Life-cycle 

4 3 2 1 

R R R Regression Test Results or Report 

I R I R I R I R I Safety Risk Assessment 

I I I R I R 

I I I R I R 

I R I R I R I R I Problem Reports, adjudications, 
SSWG Minutes 

I I I I I ECP Review Results with System 
Safety assessment indicated 

60 



Legend: 
PR: Prerequisite Requirement- Required regardless of LOR or required in order to assess and determine LOR 
ACQ: Task Requirement Performed by the Acquirer 
R: Required for assigned LOR AO: As directed by Customer/Contract 
IV&V: Independent Verification and Validation N/A: Not Applicable for this program or LOR 

Management and Support 

[MIL-STD-882E, Task 304) 

LC-2: Identify and track safety-significant I Developer System I Developer Software I PR 
requirements to mitigate the safety risk potential Safety Team Safety 
of the Software Trouble Reports {STRs) or 
Engineering Change Proposals (ECPs) being 
processed. 

Section 3.12.3 Assess Partial Mitigation or Failure 

to Mitigate, Section 3.13 Participate in Life-Cycle 
Management and Support 

[MIL-STD·882E, Task 304) 

LC-3: Update SSHA, SHA, and FHA (as required) I Developer System I Developer Software I R,AD 
Safety Team Safety 

Section 3.13.6 Update all Safety Related Artifact s 

[MIL-STD-882E, Task 204, 205, 208) 

LC-4: Update the FTA (as required) Developer System Developer Software R,AD 
Section 3.13.6 Safety Team Safety 

[MIL-STD·882E) 

LC-5: Update the HTS (as required) I Developer System I Developer Software I RAD 
Section 3.13.6 Safety Team Safety 

(MIL-STD-882E] 

LC-6: Participate in Configurat ion Management I Developer System I Developer Software I PR 
process and Configuration Control Board (CCB) Safety Team Safety 

[Best Practice) 

LC-7: Mark safety-significant software ECPs and I Developer Software I Developer I PR 
items in CM with the appropriate LOR as Safety Configuration 
determined by the SwCI Management 

Developer Software 

[Best Practice) I I Design Architect 

I I I I I Updated FHA 

Updated SSHA and SHA 

NOTE: If the safety analysis hos 
NOT been accomplished on the 
system (e.g., legacy system), then 
it must be accomplished now) 

Updated FTA 

I I I I I Updated HTS 

I I I I I Safety Review and Approval of 
ECPs and STRs 

I I I I I ECP Review Results 

61 



Legend: 
PR: Prerequisite Requirement- Required regardless of LOR or required in order to assess and determine LOR 

ACQ: Task Requirement Performed by the Acquirer 
R: Required for assigned LOR AO: As directed by Customer/Contract 

IV&V: Independent Verificat ion and Validation 
,.,.~~ --:1:w-.1mr-

N/ A: Not Applicable for this program or LOR 

LC-8: Review problem reporting/defect tracking, Developer Software Developer I PR 
change control, and change review activities for Safety Configuration 
safety impact and compliance Management 

[Best Practice] Developer Software 
Design Architect 

LC-9: Document the results of any Safety Developer System Developer Software I PR 
Reviews Safety Safety 

(Best Practice] 

Note: Regression testing must be performed on 
all changed or modified safety-significant 

software in system sustainment . See TP-18 and 
TP-19 

LC-10: Review Test Reports [Safety, Test) Developer System Developer Software PR 
(Best Practice) Safety Team Safety 

LC-11: Review and give signature approval on Developer System Developer Software PR 
safety-significant CRs Safety Team Safety 

(Best Practice) 

LC-12: Independently review safety-significant Someone Other Than IV&V, 
code changes implemented by ECPs within the Designer /Developer AD 
CM process 

[Best Practice] 

I I I I I Software Trouble Report and 
Defect Tracking Results 

I I I I I Safety Review Results 

R R R R Regression Test Plans 

Regression Test Results 

Test Report Review 

Safety-significant CR Signature 
from Software Safety 

Independent Safety Review 

Results 

62 


